Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AdTech on Azure - Cosmos DBを利用した配信システムの全て -
Search
Shinichi Morimoto
February 27, 2019
Technology
2
2.7k
AdTech on Azure - Cosmos DBを利用した配信システムの全て -
Shinichi Morimoto
February 27, 2019
Tweet
Share
More Decks by Shinichi Morimoto
See All by Shinichi Morimoto
Actor Model meets the Kubernetes - CNDT 2019
shnmorimoto
6
5.2k
Akka Cluster 超入門 - 2019 Fringe81 大新年勉強会
shnmorimoto
1
430
頑張らないKubernetes/ Real World Kubernetes
shnmorimoto
4
2.2k
circeから学ぶ GenericProgramming入門 - Scala関西Summit 2018
shnmorimoto
4
3.8k
Other Decks in Technology
See All in Technology
Scrum Guide Expansion Pack が示す現代プロダクト開発への補完的視点
sonjin
0
480
製造業から学んだ「本質を守り現場に合わせるアジャイル実践」
kamitokusari
0
430
歴史から学ぶ、Goのメモリ管理基礎
logica0419
10
2.3k
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
180
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
AWS re:Invent2025最新動向まとめ(NRIグループre:Cap 2025)
gamogamo
0
150
Agentic AIが変革するAWSの開発・運用・セキュリティ ~Frontier Agentsを試してみた~ / Agentic AI transforms AWS development, operations, and security I tried Frontier Agents
yuj1osm
0
210
Data Hubグループ 紹介資料
sansan33
PRO
0
2.5k
技術選定、下から見るか?横から見るか?
masakiokuda
0
180
Cloud WAN MCP Serverから考える新しいネットワーク運用 / 20251228 Masaki Okuda
shift_evolve
PRO
0
140
ESXi のAIOps だ!2025冬
unnowataru
0
480
Introduction to Bill One Development Engineer
sansan33
PRO
0
340
Featured
See All Featured
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.5k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
110
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
410
Making the Leap to Tech Lead
cromwellryan
135
9.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
How to make the Groovebox
asonas
2
1.9k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Transcript
Ad Tech on Azure Cosmos DBを利用した配信システムの全て Fringe81 株式会社 技術開発本部 森本 真一
© 2019 Fringe81 Co.,Ltd.
広告配信について © 2019 Fringe81 Co.,Ltd. スマホ 広告配信システム ① 広告をリクエスト 〜な方が訪問されたので、広告をく
ださい。 ②広告情報を返却 その方に最適な広告はこれです。 ③広告を表示 -------------------- -------------------- -------------------- --------------------
広告配信で重要なこと © 2019 Fringe81 Co.,Ltd. • 広告配信システムは可用性が高くなくてはならない ◦ 広告はメディアにとって収益源の一つ ◦
もし広告配信システムが落ちた場合、落ちている間、収益は0 • 広告配信システムはレスポンスが早くなければならない ◦ レスポンスが返るまで、広告枠(広告が表示される場所)は真っ白なまま ◦ レスポンスが遅い場合、メディアのUXを著しく損なう
広告配信で重要なこと © 2019 Fringe81 Co.,Ltd. • 広告配信システムは可用性が高くなくてはならない ◦ 広告はメディアにとって収益源の一つ ◦
もし広告配信システムが落ちた場合、落ちている間、収益は0 • 広告配信システムはレスポンスが早くなければならない ◦ レスポンスが返るまで、広告枠(広告が表示される場所)は真っ白なまま ◦ レスポンスが遅い場合、メディアのUXを著しく損なう 落ちると、非常にまずい 高可用性 レスポンスが速くなくてはならない(数十ms) 低レイテンシ
広告配信について(再) © 2019 Fringe81 Co.,Ltd. スマホ 広告配信システム ① 広告をリクエスト 〜な方が訪問されたので、広告をく
ださい。 ②広告情報を返却 その方に最適な広告はこれです。 ③広告を表示 -------------------- -------------------- -------------------- -------------------- より詳細に見てみる
広告が配信されるまで © 2019 Fringe81 Co.,Ltd. スマホ 有効な広告セット取得 (一般的にはキャッシュで持つ) 有効な広告をフィルタリング -
広告枠にマッチするか - デバイスはマッチするか( iOS/Android) - etc... ユーザー属性情報でフィルタリング リアルタイムな情報でフィルタリング - 広告の予算 - Frequency(同じ広告を何回も表示しな い) 表示する広告を決定 ① 広告をリクエスト OS情報、広告識別子、どの広告枠 か、etc ②最適な広告情報を返却 広告主、メディア双方に最も利益を もたらす広告
広告が配信されるまで © 2019 Fringe81 Co.,Ltd. スマホ 有効な広告セット取得 (一般的にはキャッシュで持つ) 有効な広告をフィルタリング -
広告枠にマッチするか - デバイスはマッチするか( iOS/Android) - etc... ユーザー属性情報でフィルタリング リアルタイムな情報でフィルタリング - 広告の予算 - Frequency(同じ広告を何回も表示しな い) 表示する広告を決定 ① 広告をリクエスト OS情報、広告識別子、どの広告枠 か、etc ②最適な広告情報を返却 広告主、メディア双方に最も利益を もたらす広告 プログラム内部の処理で頑張れる部 分 速い処理 プログラム外 (別システム?DB?KVS?) への問い合わせが必要な部分 遅い処理
外部(他システム、DB、KVS)問い合わせ © 2019 Fringe81 Co.,Ltd. • ユーザー属性情報問い合わせ ◦ ユーザ毎に属性情報を管理している ◦
通常データ量が多い(ユーザ数 × 属性数)ため、プログラム内でキャッシュできな い • リアルタイムな情報の問い合わせ(広告予算の消化額等) ◦ 広告がクリックされる度に予算が消化される ◦ 常に最新の情報を参照しないと予算を超過して、広告が表示されることがある ◦ 複数のサーバで同一の情報を参照/更新しないといけない DB/KVSに問い合わせ/更新するために、時間がかかる処理になる
ここまでのまとめ © 2019 Fringe81 Co.,Ltd. • 広告配信システムには高可用性が必要 • 広告配信システムには低レイテンシが必要 ◦
広告配信の仕組み上、外部への問い合わせ/更新が必要 ◦ 外部への問い合わせ/更新は時間がかかる処理
ここまでのまとめ © 2019 Fringe81 Co.,Ltd. • 広告配信システムには高可用性が必要 • 広告配信システムには低レイテンシが必要 ◦
広告配信の仕組み上、外部への問い合わせ/更新が必要 ◦ 外部への問い合わせ/更新は時間がかかる処理 Azure の Managed Service を活用して 高可用性 × 低レイテンシ なシステムを構築する!!!
© 2019 Fringe81 Co.,Ltd. 広告配信システムアーキテクチャ 配信システム 属性情報システム Internal LB Public
LB Cosmos DB Azure Cache for Redis Azure Database for MySQL
© 2019 Fringe81 Co.,Ltd. 広告配信システムアーキテクチャ 配信システム 属性情報システム Internal LB Public
LB Cosmos DB Azure Cache for Redis Azure Database for MySQL
配信システムの可用性(Virtual Machine) © 2019 Fringe81 Co.,Ltd. • LoadBalancer配下に複数台を並べる構成 • 可用性セットを利用
◦ 全台がメンテナンスで一斉に停止するのを防ぐ ◦ 本当は可用性ゾーンを利用したいが、まだ東日本リージョンでGAにならず …。 • Azure Site Recoveryについては検討中 ◦ 数種類のDB/KVSを利用しているので、それらのレプリケーション方法の 検証中
© 2019 Fringe81 Co.,Ltd. 広告配信システムアーキテクチャ 配信システム 属性情報システム Internal LB Public
LB Cosmos DB Azure Cache for Redis Azure Database for MySQL 属性情報の問い合わせ
属性情報システム(属性情報の管理) © 2019 Fringe81 Co.,Ltd. • 配信サーバからの属性情報の問い合わせに対して低レイテンシ で返答するシステム • 属性情報は容量が大きいデータの為、プログラム内にキャッシュ
はしない • RocksDBを利用して、属性情報を格納し管理する ◦ Facebookが開発した組み込み用KVS ◦ 高速なストレージを効率よく利用できる
© 2019 Fringe81 Co.,Ltd. 広告配信システムアーキテクチャ 配信システム セグメントシステム Internal LB Public
LB Cosmos DB Azure Cache for Redis Azure Database for MySQL データの問い合わせ
データの問い合わせ © 2019 Fringe81 Co.,Ltd. • DB/KVSを特性に合わせて使い分ける • 非リアルタイムなデータ(頻繁に更新されないデータ) ◦
Azure Database for MySQL ▪ 管理画面から更新される広告情報マスター ▪ 定期的にロードし、プログラム上でキャッシュする • リアルタイムなデータ(広告配信システム上で更新、頻繁に更新されるデータ) ◦ Azure Cache for Redis ▪ データが消えてもビジネスには多大な影響を与えないデータ ◦ Cosmos DB ▪ 広告予算の消化額等 ▪ 永続化が必須となるデータ
データの問い合わせ © 2019 Fringe81 Co.,Ltd. • DB/KVSを特性に合わせて使い分ける • 非リアルタイムなデータ(頻繁に更新されないデータ) ◦
Azure Database for MySQL ▪ 管理画面から更新される広告情報マスター ▪ 定期的にロードし、プログラム上でキャッシュする • リアルタイムなデータ(広告配信システム上で更新、頻繁に更新されるデータ) ◦ Azure Cache for Redis ▪ データが消えてもビジネスには多大な影響を与えないデータ ◦ Cosmos DB ▪ 広告予算の消化額等 ▪ 永続化が必須となるデータ 問い合わせに低レイテンシーが要求されるデータを担う
データの問い合わせ © 2019 Fringe81 Co.,Ltd. • DB/KVSを特性に合わせて使い分ける • 非リアルタイムなデータ(頻繁に更新されないデータ) ◦
Azure Database for MySQL ▪ 管理画面から更新される広告情報マスター ▪ 定期的にロードし、プログラム上でキャッシュする • リアルタイムなデータ(広告配信システム上で更新、頻繁に更新されるデータ) ◦ Azure Cache for Redis ▪ データが消えてもビジネスには多大な影響を与えないデータ ◦ Cosmos DB ▪ 広告予算の消化額等 ▪ 永続化が必須となるデータ インメモリなので速い。データの永続化は必要なし。
データの問い合わせ © 2019 Fringe81 Co.,Ltd. • DB/KVSを特性に合わせて使い分ける • 非リアルタイムなデータ(頻繁に更新されないデータ) ◦
Azure Database for MySQL ▪ 管理画面から更新される広告情報マスター ▪ 定期的にロードし、プログラム上でキャッシュする • リアルタイムなデータ(広告配信システム上で更新、頻繁に更新されるデータ) ◦ Azure Cache for Redis ▪ データが消えてもビジネスには多大な影響を与えないデータ ◦ Cosmos DB ▪ 広告予算の消化額等 ▪ 永続化が必須となるデータ データの永続化が必要。それでも速い…?
Cosmos DB © 2019 Fringe81 Co.,Ltd. • AzureのManaged NoSQL Service
• グローバル規模にレプリケーション可能 • 要求ユニット(RU)単位でのコスト課金 • 高速なデータアクセス • 選べるAPI ◦ SQL, Cassandra, MongoDB, etc • 選べる整合性 ◦ 厳密、有界整合性、セッション、一貫性のあるプレフィックス、結果的
広告配信 - CosmosDBの利用 - © 2019 Fringe81 Co.,Ltd. 配信システム Cosmos
DB Cosmos DB レプリケーション 東日本リージョン 西日本リージョン Read/Write 数msでの レスポンス
Cosmos DBの利用 © 2019 Fringe81 Co.,Ltd. • 可用性を担保したい ◦ グローバル規模にレプリケーション可能な為、最悪Regionが落ちてもなん
とかなる ◦ 現在は西日本にのみレプリケート • 低レイテンシー ◦ Readであれば、数msでデータアクセス可能 ◦ アクセスするPartitionが異なる場合だと十分性能がスケールする • 運用が楽 ◦ Managed Serviceなので運用が楽 ◦ 自動スケールはしないが、スケーリング(RUを増やす)はAzure のコンソー ルからできる
Cosmos DBのここがちょっと…。 © 2019 Fringe81 Co.,Ltd. • Atomic Counterが欲しい…。 ◦
単純に加算のみをしたいユースケースが多い。 ◦ 現状ではread -> write or ストアドプロシージャを駆使するしかない • RUの自動スケール ◦ 現状、事前にRUを見積もらなければならない ◦ リクエストがスパイクした場合を考えて、現状かなりの余裕を持たせている ◦ 自動スケールがあると、運用も費用面でも嬉しい…。
まとめ © 2019 Fringe81 Co.,Ltd. • 広告配信システムでは 高可用性 と 低レイテンシー
が重要 • 高可用性を担保するための仕組みを利用する ◦ 可用性セット、Azure Site Recovery • 高可用性と低レイテンシーを実現する為に各種データストアを使 い分ける ◦ MySQL, Redis, CosmosDBの用途にあった組み合わせ • CosmosDBは是非利用しよう ◦ グローバル規模でのレプリケーション(マルチマスターも可) ◦ Partitionをきちんと設計すれば高速なデータアクセスも可