Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GitHub ActionsのGitHub-hosted Larger Runnersと他サービスと
Search
shonansurvivors
June 28, 2023
Technology
0
1.1k
GitHub ActionsのGitHub-hosted Larger Runnersと他サービスと
shonansurvivors
June 28, 2023
Tweet
Share
More Decks by shonansurvivors
See All by shonansurvivors
SOC2取得の全体像
shonansurvivors
1
370
非エンジニアによるDevin開発のためにSREができること
shonansurvivors
0
140
SREによる隣接領域への越境とその先の信頼性
shonansurvivors
2
850
スタートアップがAWSパートナーになって得られたこと
shonansurvivors
3
1.1k
AWSで構築するCDパイプラインとその改善
shonansurvivors
5
4k
Terraformでmoduleを使わずに複数環境を構築して感じた利点
shonansurvivors
3
3.7k
クロステナントアクセスを要件とするsmartroundのマルチテナントSaaSアーキテクチャ
shonansurvivors
0
530
CodeBuildで動かすecspresso
shonansurvivors
2
4k
EC2からのECS移行においてIaCとCDをどう変えたか
shonansurvivors
23
7.6k
Other Decks in Technology
See All in Technology
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
リーダーになったら未来を語れるようになろう/Speak the Future
sanogemaru
0
280
SREとソフトウェア開発者の合同チームはどのようにS3のコストを削減したか?
muziyoshiz
1
100
自動テストのコストと向き合ってみた
qa
0
110
AIAgentの限界を超え、 現場を動かすWorkflowAgentの設計と実践
miyatakoji
0
130
BirdCLEF+2025 Noir 5位解法紹介
myso
0
190
英語は話せません!それでも海外チームと信頼関係を作るため、対話を重ねた2ヶ月間のまなび
niioka_97
0
110
いまさら聞けない ABテスト入門
skmr2348
1
200
AI時代だからこそ考える、僕らが本当につくりたいスクラムチーム / A Scrum Team we really want to create in this AI era
takaking22
6
3.4k
OpenAI gpt-oss ファインチューニング入門
kmotohas
2
960
extension 現場で使えるXcodeショートカット一覧
ktombow
0
210
DataOpsNight#8_Terragruntを用いたスケーラブルなSnowflakeインフラ管理
roki18d
1
340
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Context Engineering - Making Every Token Count
addyosmani
5
180
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
A Modern Web Designer's Workflow
chriscoyier
697
190k
The World Runs on Bad Software
bkeepers
PRO
71
11k
Mobile First: as difficult as doing things right
swwweet
224
10k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
850
How to train your dragon (web standard)
notwaldorf
96
6.3k
Transcript
GitHub dockyard(2023/8/5) GitHub Actionsの GitHub-hosted Larger Runnersと 他サービスと 株式会社スマートラウンド 山原
崇史(@shonansurvivors)
自己紹介 株式会社スマートラウンド SRE/コーポレートITチーム エンジニアリングマネージャー 山原 崇史 (やまはら たかし) 経歴等 ・SIer
→ 銀行 → Web系ベンチャー数社 → 現職 ・2023 Japan AWS Top Engineers(Software) ・AWS Startup Community Core Member 好きな技術領域 GitHub Actions / AWS / Terraform shonansurvivors
事業およびプロダクト紹介 ミッション スタートアップが可能性を最大限に発揮できる世界をつくる smartroundが実現する世界 統一化・標準化されたデータ管理によって、スタートアップと投資家双方の業務を効率化
本日のテーマ GitHub-hosted Larger Runnersと AWS CodeBuildやSelf-hostedとの比較の話
追加されたRunners 4-cores以上が選択可能に🎉 vCPUs(x86_64) Memory(RAM) Storage(SSD) OS 2 7GB 14GB Linux,
Windows 4 16GB 150GB Linux 8 32GB 300GB Linux, Windows 16 64GB 600GB Linux, Windows 32 128GB 1,200GB Linux, Windows 64 256GB 2,040GB Linux, Windows ※上記以外にmacOSあり
使い方 1. OraganizationのSettings > Actions > Runnersの設定画面でLarger Runnerを加える ◦ https://docs.github.com/en/actions/using-github-hosted-runners/managing-larger-runners#a
dding-a-larger-runner-to-an-organization 2. 追加したRunnerの名前をjobs.<job_id>.runs-on.labelsに記述する jobs: test: runs-on: labels: ubuntu-20.04-4-cores
処理時間 とあるJVM系言語でのCIの結果 (試行回数が各1回だけなのであくまで参考に ...) • 2-cores • 4-cores • 8-cores
4m 32s 5m 50s 12m 26s
気になる料金 • 2vCPUの料金の単純比例となる • Larger Runnersは無料枠の対象外なので注意 (例:Teamsの3,000分無料枠は消費されなかった ) スペック 1分あたりの料金
(Linux) 2vCPU / 7GB RAM $0.008 4vCPU / 16GB RAM $0.016 8vCPU / 32GB RAM $0.032 16vCPU / 64GB RAM $0.064 32vCPU / 128GB RAM $0.128 64vCPU / 256GB RAM $0.256
他のCIサービスとの比較 若干割高に見える? 🤔 スペック 1分あたりの料金 (Linux) 2vCPU / 7GB RAM
$0.008 4vCPU / 16GB RAM $0.016 8vCPU / 32GB RAM $0.032 16vCPU / 64GB RAM $0.064 32vCPU / 128GB RAM $0.128 64vCPU / 256GB RAM $0.256 GitHub Actions スペック 1分あたりの料金 (Linux) 2vCPU / 3GB RAM (general1.small) $0.005 4vCPU / 7GB RAM (general1.medium) $0.010 8vCPU / 15GB RAM (general1.large) $0.020 - - - - - - AWS CodeBuild(東京リージョン)
Self-hosted RunnersにAmazon EC2を使うとしたら Self-hosted Runnersの方が魅力的に見えてしまうが・・・ 🥺 スペック 60分あたりの料金 (Linux) 2vCPU
/ 7GB RAM $0.480 4vCPU / 16GB RAM $0.960 8vCPU / 32GB RAM $1.920 16vCPU / 64GB RAM $3.840 32vCPU / 128GB RAM $7.680 64vCPU / 256GB RAM $15.360 GitHub Actions スペック 60分あたりの料金 2vCPU / 8GB RAM (m5.large) $0.096 4vCPU / 16GB RAM (m5.xlarge) $0.192 8vCPU / 32GB RAM (m5.2xlarge) $0.384 16vCPU / 64GB RAM (m5.4xlarge) $0.768 32vCPU / 128GB RAM (m5.8xlarge) $1.536 64vCPU / 256GB RAM (m5.16xlarge) $3.072 Amazon EC2のm5ファミリー(東京リージョン)
一概に優劣は付けられない AWS CodeBuild • 類似サービスではあるが、そもそも 仕様や使い勝手に大きく違いがある • 実際に処理が開始されるまでの 待ち時間にムラがあり、そこに多くかかることがある (以下は一例)
処 理 の 流 れ 環境が起動するまでの時間 コードをGitHubから ダウンロードする時間
一概に優劣は付けられない Self-hosted Runners • 一定の初期構築工数 はかかる ◦ 専用のTerraform module(https://github.com/philips-labs/terraform-aws-github-runner )
などを利用することで構築を楽にすることは可能 • ジョブ開始までの待ち時間が長く感じて 実用を見送った経験あり ◦ ちなみに登壇者の所属組織のエンジニア数は 10名ほど(2023年8月現在) ◦ より大きな規模の開発組織で、時間あたりのジョブ起動回数も多く、 Runnerをいくつか常時起動してプールして利用する場合は 待ち時間は問題にならないのかも (Self-hostedを運用している人、ぜひ教えて下さい! )
まとめ Github-hosted Larger Runners • すぐに手軽にGitHub Actionsのジョブを高速化できる • Self-hosted Runnersを運用するほどではない
小規模組織には特におすすめ できるのではないか • AWS CodeBuildを選択するかは組織の事情に合わせて (できるだけAWSに寄せたいなど)
ご清聴ありがとうございました! Startup comes first! Join our team! jobs.smartround.com