Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
深度推定モデルの自己教師あり学習/self-supervised-depth
Search
shun74
May 26, 2024
0
440
深度推定モデルの自己教師あり学習/self-supervised-depth
shun74
May 26, 2024
Tweet
Share
More Decks by shun74
See All by shun74
GPUでステレオマッチング / Stereo-matching with GPU
shun74
0
980
卒業研究の進め方 / How to preceed with the research
shun74
1
530
Barcode Recognition / pharmacode-decoder
shun74
0
970
Vision Transformer講座 / Vision Transformer Presentation
shun74
1
670
ニューラルネットの1bit化 / 1bit-neural-network
shun74
0
900
Defocus Map Estimation From a Single Image Based on Two-Parameter Defocus Model / two-parameter-defocus-model
shun74
0
360
理解してほしいVision Transformer / plz-understand-ViT
shun74
0
730
Featured
See All Featured
The browser strikes back
jonoalderson
0
67
Six Lessons from altMBA
skipperchong
29
4.1k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
22
WCS-LA-2024
lcolladotor
0
380
How to Talk to Developers About Accessibility
jct
1
83
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
740
Fireside Chat
paigeccino
41
3.8k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
710
Art, The Web, and Tiny UX
lynnandtonic
304
21k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Transcript
深度推定モデルの 自己教師あり学習 shun sato
深層学習モデル(Deep Learning) • 深層学習モデルはトレーニングを経て推論が可能に �@ュ#ルゥ!ッ&ー%��� 私はCh4tG*Tです。なにかお手伝い できることはありますか? トレーニング
深層学習モデルのトレーニングの様子 • 入力データと教師データの組でトレーニング ①データ入力 入力データ ②推論 ④逆伝搬 正解は 「いぬ」です 教師データ
③損失を計算 これは 「ねこ」です 推論結果 ※逆伝搬:微分による深層学習モデルの重みの更新
自己教師あり学習(Self-Supervised Learning) • 教師データ無しで深層学習モデルを学習する • なんらかのアルゴリズムで推論結果から損失を計算する 例:深層学習モデルでゲーム対戦をする 勝ち:損失小 負け:損失大 人間に勝つ
レベルに成長! AI同士で永遠に対戦
深度推定モデル • 入力画像に対応する深度画像を推定 KITTIデータセット https://www.cvlibs.net/datasets/kitti/ 深度推定で最も有名な大規模データセット 専用車両を使ってデータを収集
事前知識:MVS(Multi-View Stereo) • 複数視点画像から三次元再構成を行うアルゴリズム(深層学習ではない) • カメラ位置(Camera Pose)と深度(Depth)を推定 1. 特徴点マッチングを使って Camera
Poseを推定 2. Camera Poseを調整しながら Depthを推定 気になる人はACMHを調べて読んでみよう!
深度推定モデルの自己教師あり学習 • MVSのアルゴリズムを応用 ⇨ 動画から学習を可能にする! 時間tの画像 時間t+1の画像 時間tの深度 ②深度推定 ①カメラ移動推定
①②の情報を使って時間t+1の画像を再投影 ⇨時間t+1の画像と損失を計算!
画像再投影のイメージ Cam 1の画像 Cam 1の深度 × Cam 1 Cam 2
3D reconstruct Cam Pose Cam 2視点の画像 2D projection
研究で取り組んでいること • 魚眼画像で深度推定モデルの自己教師あり学習 通常レンズに 比べると精度✗
データセットは自前で作成 • Unityで作成! • 勉強したこと ◦ カメラシェーダの変更 ◦ 深度バッファの取得
まとめ • 深層学習モデルはトレーニングが必要 • 自己教師あり学習は教師データがいらない • 深度推定モデルも自己教師あり学習ができる • 数学頑張れば魚眼画像でもできる