Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
卒業研究の進め方 / How to preceed with the research
Search
shun74
December 21, 2022
Research
1
530
卒業研究の進め方 / How to preceed with the research
Explain how to preceed with the research.
shun74
December 21, 2022
Tweet
Share
More Decks by shun74
See All by shun74
深度推定モデルの自己教師あり学習/self-supervised-depth
shun74
0
440
GPUでステレオマッチング / Stereo-matching with GPU
shun74
0
960
Barcode Recognition / pharmacode-decoder
shun74
0
960
Vision Transformer講座 / Vision Transformer Presentation
shun74
1
670
ニューラルネットの1bit化 / 1bit-neural-network
shun74
0
890
Defocus Map Estimation From a Single Image Based on Two-Parameter Defocus Model / two-parameter-defocus-model
shun74
0
360
理解してほしいVision Transformer / plz-understand-ViT
shun74
0
730
Other Decks in Research
See All in Research
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
570
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
390
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
440
Open Gateway 5GC利用への期待と不安
stellarcraft
2
160
投資戦略202508
pw
0
580
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
260
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
520
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
300
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
15
8k
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
490
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
170
Featured
See All Featured
BBQ
matthewcrist
89
9.9k
KATA
mclloyd
PRO
32
15k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
94
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Visualization
eitanlees
150
16k
Six Lessons from altMBA
skipperchong
29
4.1k
Speed Design
sergeychernyshev
33
1.4k
Practical Orchestrator
shlominoach
190
11k
Mobile First: as difficult as doing things right
swwweet
225
10k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Transcript
研究の進め方 B4 shun sato
目次 • おおまかなテーマを決めよう • 論文読めるようになろう • 詳細なテーマを決めよう • 実験をしよう •
論文を書こう • スケジューリング • その他
おおまかなテーマを決めよう 興味のあるテーマをなんとなく決めてみよう 例: • ニューラルネットでなんでもいいからやりたい • VRとかARでなんか作りたい • ネットワーク関連で新しいことをしたい •
テーマ決めないと研究が始まらない ⇢ まずは興味のあることから
論文を読めるようになろう ≒英語の論文を読めるようになる • 日本語の論文は情報が限られてくる ⇢ 英語の論文を読もう • 論文は文法が簡単だから単語だけで読める ⇢ 分からない単語だけ翻訳しながら読んでればそのうち読めるように
詳細なテーマを決めよう おおまかなテーマから深めていく • Survey論文がおすすめ(分野の研究をまとめた論文、まとめサイト的な) 例: 1. ニューラルネットのSurveyを読む ⇢ 最適化が面白そう! 2.
NN最適化のSurveyを読む ⇢ 量子化が面白そう! 3. NN量子化のSurveyを読む ⇢ 1bit化が面白そう! 4. 最新の画像分類モデルを1bit化してみたい ⇢ 研究テーマ決定
詳細なテーマを決めよう その他のテーマの決め方 • おおまかなテーマから興味のある研究を見つけて論文を読んでみる 1. 今後の課題みたいな章にまだやってないことが書いてある ⇢ 自分でやってみる 2. 自分ならそのタスクをどのように取り組むか考えてみる
⇢ やってみて論文の手法と比べる(結果が悪くてもOK) • 先生からもらう ⇢ おすすめ度:低 ⇢ モチベが危うい
実験をしよう 詳細なテーマが決まったらどんどん実験を始める • ここが一番ハードルが高い • 実装などが伴うので気合でなんとかする • 消滅する人はここができなくて消える • 一回始めれば”調査⇢実験⇢考察”のサイクルがどんどん回せる
論文を書こう 実験のデータをまとめて論文を書く • ”調査⇢実験⇢考察”のサイクルが回せた分だけ書く量が増やせる • 早めに書いて先生に推敲してもらおう
スケジューリング • 3~5月:テーマの選定 ⇢ 具体的な実験計画 • 6月:一回目の実験を回して考察 • 7~8月:中間発表まで何回か実験のサイクルを回す •
9~11月:中間発表を踏まえて実験、大雑把だったところを埋めるのも◎ • 12~1月:論文をまとめる
その他 • テーマの決定は早くやろう ⇢ 中間発表はテーマ選定だけでも良かったりするが... ⇢ 中間発表までに決まってない人は12月ぐらいまで実験始めない • できるテーマを選ぼう ⇢
2ヶ月あれば現実的なテーマを決められる 上記の2つは本当に大事。できてない人は消滅のリスクが高いorz