Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
理解してほしいVision Transformer / plz-understand-ViT
Search
shun74
June 23, 2022
Programming
0
730
理解してほしいVision Transformer / plz-understand-ViT
Easy to understand explanation form NN to ViT.
shun74
June 23, 2022
Tweet
Share
More Decks by shun74
See All by shun74
深度推定モデルの自己教師あり学習/self-supervised-depth
shun74
0
440
GPUでステレオマッチング / Stereo-matching with GPU
shun74
0
980
卒業研究の進め方 / How to preceed with the research
shun74
1
530
Barcode Recognition / pharmacode-decoder
shun74
0
970
Vision Transformer講座 / Vision Transformer Presentation
shun74
1
670
ニューラルネットの1bit化 / 1bit-neural-network
shun74
0
900
Defocus Map Estimation From a Single Image Based on Two-Parameter Defocus Model / two-parameter-defocus-model
shun74
0
360
Other Decks in Programming
See All in Programming
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
130
SwiftUIで本格音ゲー実装してみた
hypebeans
0
450
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.4k
Graviton と Nitro と私
maroon1st
0
110
TerraformとStrands AgentsでAmazon Bedrock AgentCoreのSSO認証付きエージェントを量産しよう!
neruneruo
4
960
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
150
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
3.1k
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
150
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
150
チームをチームにするEM
hitode909
0
350
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
140
俺流レスポンシブコーディング 2025
tak_dcxi
14
9.1k
Featured
See All Featured
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
290
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Git: the NoSQL Database
bkeepers
PRO
432
66k
The browser strikes back
jonoalderson
0
64
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
2
2.7k
HDC tutorial
michielstock
0
260
The Invisible Side of Design
smashingmag
302
51k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
180
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
130
How GitHub (no longer) Works
holman
316
140k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
0
26
Transcript
理解してほしい VisionTransformer B4 佐藤 駿
はじめに • 機械学習を全く知らない人でも理解できるように解説します 目次 • 機械学習 • ニューラルネット • 畳み込みニューラルネット
(CNN) • Vision Transformer (ViT) • Attention • CNN vs ViT • ViTとCNNのいいとこどり例
機械学習とは • みんながAIっていってるやつ • ある入力に対して予測という形で出力を行う • なんでもできると思われがちなやつ 犬猫の画像分類 株価の予測 機械翻訳
画像の生成 自動運転 よくわかってない人の AIのイメージ
ニューラルネット(NN)とは • 任意※1の関数を近似できる魔法※2 • 入力と正解をセットにしたデータでトレーニングを行う • 基本的に中で何の計算が行われてるか分からない ※1任意ではないかもしれない ※2魔法ではない ←多層パーセプトロン(MLP)
人間の脳のシナプス結合を 模倣したモデル
畳み込みニューラルネット(CNN)とは • 画像系タスクといえばこれ、2012年ぐらいに発表されたやつが元祖。 • 畳み込みカーネルで画像の情報を効率よく収集 • 画像でなんとなく察してください 手書き数字データセット (MNIST)のCNN例 ↑
こんな感じで画像を畳み込みます ↑
CNNの応用タスク 画像分類 画像生成 物体認識 距離画像生成
Vision Transformer(ViT)とは • 2020年にGoogleが発表した新しい画像用ネットワーク • それまで画像タスクで圧倒的だったCNNに完全勝利 • 2017年にGoogleが発表した言語モデルTransformerを画像にそのまま使った ←ViTのネットワーク(論文より) 画像を1次元ベクトルにしてから
Transformerで処理 多層パーセプトロン(MLP)が使われている
Attentionとは • 最初はCNNで導入されたモジュール • ニューラルネットがどこに注目するのかを決める Attentionの例 Attentionが犬以外の背景 をあまり重要視しない ように学習されている
Scaled Dot-Product Attentionの解説 Query, Key, Valueを用意して計算 1. Query, Keyの行列積を計算 2.
SoftMaxを使ってAttentionMapを生成 3. ValueにMaskを適用して完成 • ViTで使われているのはMulti-Head Attention • Scaled Dot-Product Attentionを複数使う • より多くのパターンを作ることで情報量UP
Vision Transformerのアーキテクチャ1 入力 画像をパッチに分割して1次元ベクトル化 (xy座標情報は捨てる) パッチごとにPosition Embeddingも追加 ViTでは16*16単位で画像をパッチ化 パッチ化した画像を平坦化して入力!
Vision Transformerのアーキテクチャ2 1. Norm: データの正規化を行うNormalization 2. MHA: 情報の注目を決めるAttention 3. MLP:
情報の処理を行う多層パーセプトロン (横道に逸れている矢印はSkip-Connection) Norm->MHA->Norm->MLPのブロックをLレイヤー繰り返す ここでMHAの入力QKVは全て同じ入力(?!)
CNN vs ViT Q. なぜViTがCNNに圧勝したのか A. タスクがちょうど良かったから ViT : Attentionで全体(Global)の特徴量をまとめる
CNN: 畳み込みで局所(Local)の特徴量を捉える • 比較が画像分類タスクだったためViTが圧勝した • 画像分類は画像の中に何が映っているか何となく分かればいい ViTとResNet(CNN)の 内部表現の類似性の比較 ViTの方が安定した表現を 獲得している (?)
CNNとViTのいいとこどり例 Depth Former (2022/3) : 深度推定タスク • ViTはCNNより良い性能が出せたがあと一歩性能が足りなかった • CNNの情報を足すことで細かいところまで考慮できるようになった
• 深度(距離)画像なのでカーペットのテクスチャが反映されているのはおかしい • CNNとViTの組み合わせでLocalとGlobalの情報を考慮できるネットワークになった 入力画像 ViTモデル1 ViTモデル2 DepthFormer 正解画像
さいごに • 現在多くの画像タスクでBackboneとしてViTが使われている • ViT自体も様々なモデルの開発競争が行われている • ViT以外にもCNNだけのモデルやMLPのモデルも研究されている • みんなもViTを実装して最新のAIモデルを作ろう! •
画像系AIの相談があれば@shun74まで
参考 1. ニューラルネット: https://ledge.ai/neural-network/ 2. CNN: https://leadinge.co.jp/rd/2021/06/07/863/ 3. ViT: https://qiita.com/omiita/items/0049ade809c4817670d7
(最強資料) 4. ViT vs CNN: https://ai-scholar.tech/articles/transformer/transformer-vs-cnn 5. DepthFormer: https://arxiv.org/abs/2203.14211