Upgrade to Pro — share decks privately, control downloads, hide ads and more …

理解してほしいVision Transformer / plz-understand-ViT

shun74
June 23, 2022

理解してほしいVision Transformer / plz-understand-ViT

Easy to understand explanation form NN to ViT.

shun74

June 23, 2022
Tweet

More Decks by shun74

Other Decks in Programming

Transcript

  1. Scaled Dot-Product Attentionの解説 Query, Key, Valueを用意して計算 1. Query, Keyの行列積を計算 2.

    SoftMaxを使ってAttentionMapを生成 3. ValueにMaskを適用して完成 • ViTで使われているのはMulti-Head Attention • Scaled Dot-Product Attentionを複数使う • より多くのパターンを作ることで情報量UP
  2. Vision Transformerのアーキテクチャ2 1. Norm: データの正規化を行うNormalization 2. MHA: 情報の注目を決めるAttention 3. MLP:

    情報の処理を行う多層パーセプトロン (横道に逸れている矢印はSkip-Connection) Norm->MHA->Norm->MLPのブロックをLレイヤー繰り返す ここでMHAの入力QKVは全て同じ入力(?!)
  3. CNN vs ViT Q. なぜViTがCNNに圧勝したのか A. タスクがちょうど良かったから ViT : Attentionで全体(Global)の特徴量をまとめる

    CNN: 畳み込みで局所(Local)の特徴量を捉える • 比較が画像分類タスクだったためViTが圧勝した • 画像分類は画像の中に何が映っているか何となく分かればいい ViTとResNet(CNN)の 内部表現の類似性の比較 ViTの方が安定した表現を 獲得している (?)
  4. CNNとViTのいいとこどり例 Depth Former (2022/3) : 深度推定タスク • ViTはCNNより良い性能が出せたがあと一歩性能が足りなかった • CNNの情報を足すことで細かいところまで考慮できるようになった

    • 深度(距離)画像なのでカーペットのテクスチャが反映されているのはおかしい • CNNとViTの組み合わせでLocalとGlobalの情報を考慮できるネットワークになった 入力画像 ViTモデル1 ViTモデル2 DepthFormer 正解画像
  5. 参考 1. ニューラルネット: https://ledge.ai/neural-network/ 2. CNN: https://leadinge.co.jp/rd/2021/06/07/863/ 3. ViT: https://qiita.com/omiita/items/0049ade809c4817670d7

    (最強資料) 4. ViT vs CNN: https://ai-scholar.tech/articles/transformer/transformer-vs-cnn 5. DepthFormer: https://arxiv.org/abs/2203.14211