Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
False Start Detection in Elite Athletics
Search
Kevin Brosnan
October 18, 2016
Research
0
130
False Start Detection in Elite Athletics
Short Informal Mathematics (SIM) Talk given within the department at the University of Limerick
Kevin Brosnan
October 18, 2016
Tweet
Share
More Decks by Kevin Brosnan
See All by Kevin Brosnan
Automated Gating for Flow Cytometry
significantstats
0
200
False Starts in Athletics: Are they truly fair?
significantstats
0
110
False Starts in Athletics: Are they truly fair?
significantstats
0
91
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
150
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
140
Challenges for tertiary level mathematics tutors
significantstats
0
93
Elite Athletics: Is the false start disqualification rule appropriate?
significantstats
0
130
Quantile Regression
significantstats
0
150
Forward Modelling of UK Gas Prices
significantstats
0
60
Other Decks in Research
See All in Research
湯村研究室の紹介2025 / yumulab2025
yumulab
0
220
説明可能な機械学習と数理最適化
kelicht
2
670
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
340
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
270
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
160
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
620
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
480
IMC の細かすぎる話 2025
smly
2
770
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
260
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
1
220
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
140
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
480
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Building an army of robots
kneath
306
46k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Statistics for Hackers
jakevdp
799
230k
Six Lessons from altMBA
skipperchong
29
4.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Bash Introduction
62gerente
615
210k
Embracing the Ebb and Flow
colly
88
4.9k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Transcript
Fa l s e - St a r t D
e t e c t i o n i n E l i t e At h l e t i c s K e v i n B r o s n a n , U n i v e r s i t y O f L i m e r i c k S I M T a l k , 1 8 t h O c t o b e r 2 0 1 6
O u t l i n e … • Background
• Rule Changes • Exploratory Analysis • Modelling • Results • Outputs
B a ck g r o u n d …
R u l e C h a n ge s
… 1998 2004 2010 2016 Individual Warning
R u l e C h a n ge s
… 1998 2004 2010 2016 Individual Warning
R u l e C h a n ge s
… 1998 2004 2010 2016 Individual Warning
R u l e C h a n ge s
… 1998 2004 2010 2016 Individual Warning
R u l e C h a n ge s
… 1998 2004 2010 2016 Individual Warning Group Warning
R u l e C h a n ge s
… 1998 2004 2010 2016 Individual Warning Group Warning
R u l e C h a n ge s
… 1998 2004 2010 2016 Individual Warning Group Warning
R u l e C h a n ge s
… 1998 2004 2010 2016 Individual Warning Automatic Disqualification Group Warning
R u l e C h a n ge s
… 1998 2004 2010 2016 Individual Warning Automatic Disqualification Group Warning
E x p l o r a t o r
y … 2,310 1,007 1,303
E x p l o r a t o r
y … 2,310 1,007 1,303
M o d e l l i n g …
f ( RT|µ, , ⌧ ) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆
M o d e l l i n g …
f ( RT|µ, , ⌧ ) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ µ = 400, = 100, ⌧ = 0
M o d e l l i n g …
f ( RT|µ, , ⌧ ) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ µ = 400, = 100, ⌧ = 0 µ = 400, = 100, ⌧ = 0 µ = 0, = 0, ⌧ = 150
M o d e l l i n g …
f ( RT|µ, , ⌧ ) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ µ = 400, = 100, ⌧ = 0 µ = 400, = 100, ⌧ = 0 µ = 0, = 0, ⌧ = 150 µ = 400, = 100, ⌧ = 0 µ = 0, = 0, ⌧ = 150 µ = 400, = 100, ⌧ = 50
M o d e l l i n g …
f ( RT|µ, , ⌧ ) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ µ = 400, = 100, ⌧ = 0 µ = 400, = 100, ⌧ = 0 µ = 0, = 0, ⌧ = 150 µ = 400, = 100, ⌧ = 0 µ = 0, = 0, ⌧ = 150 µ = 400, = 100, ⌧ = 50 µ = 400, = 100, ⌧ = 0 µ = 0, = 0, ⌧ = 150 µ = 400, = 100, ⌧ = 50 µ = 400, = 100, ⌧ = 150
R e s u l t s …
R e s u l t s …
R e s u l t s …
R e s u l t s …
O u t p u t s …
Thanks for Listening! Any Questions?