$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Elite Athletics: Is the false start disqualific...
Search
Kevin Brosnan
May 25, 2016
Research
0
130
Elite Athletics: Is the false start disqualification rule appropriate?
Pint of Science Limerick 2016, JJ Bowles Pub Thomondgate
Kevin Brosnan
May 25, 2016
Tweet
Share
More Decks by Kevin Brosnan
See All by Kevin Brosnan
Automated Gating for Flow Cytometry
significantstats
0
200
False Starts in Athletics: Are they truly fair?
significantstats
0
110
False Starts in Athletics: Are they truly fair?
significantstats
0
91
False Start Detection in Elite Athletics
significantstats
0
130
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
150
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
140
Challenges for tertiary level mathematics tutors
significantstats
0
93
Quantile Regression
significantstats
0
150
Forward Modelling of UK Gas Prices
significantstats
0
60
Other Decks in Research
See All in Research
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
410
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
860
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
210
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
140
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
1
220
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
820
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
430
高畑鬼界ヶ島と重文・称名寺本薬師如来像の来歴を追って/kikaigashima
kochizufan
0
100
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
220
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.2k
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
11k
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.4k
Featured
See All Featured
The Invisible Side of Design
smashingmag
302
51k
Side Projects
sachag
455
43k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Speed Design
sergeychernyshev
33
1.4k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
How GitHub (no longer) Works
holman
316
140k
How to train your dragon (web standard)
notwaldorf
97
6.4k
KATA
mclloyd
PRO
32
15k
Writing Fast Ruby
sferik
630
62k
Transcript
ELITE ATHLETICS: IS THE FALSE START DISQUALIFICATION RULE APPROPRIATE? Kevin
Brosnan
None
None
None
None
None
None
None
1998 2004 2010 2016 1 2 3 4 5 8
6 7
1998 2004 2010 2016 Individual Warning 1 2 3 4
5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Individual
Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 False
Start 2: Lane 7 Individual Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 False
Start 2: Lane 7 False Start 3: Lane 7 Lane 7 Athlete Disqualified Individual Warning 1 2 3 4 5 8 6 7
1998 2004 2010 2016 Group Warning 1 2 3 4
5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Group
Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Group
Warning False Start 2: Lane 7 Lane 7 Athlete Disqualified 1 2 3 4 5 8 6 7
1998 2004 2010 2016 Automatic DQ 1 2 3 4
5 8 6 7
1998 2004 2010 2016 Automatic DQ False Start 1: Lane
5 Lane 5 Athlete Disqualified 1 2 3 4 5 8 6 7
None
D A TA
D A TA
D A TA Pretty Pictures
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations R esults
Prof. Andrew Harrison, Department of Physical Education and Sports Sciences,
University of Limerick Dr. Kevin Hayes, Department of Mathematics and Statistics, University of Limerick
THANKS FOR LISTENING QUESTIONS?