Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Elite Athletics: Is the false start disqualific...
Search
Kevin Brosnan
May 25, 2016
Research
0
130
Elite Athletics: Is the false start disqualification rule appropriate?
Pint of Science Limerick 2016, JJ Bowles Pub Thomondgate
Kevin Brosnan
May 25, 2016
Tweet
Share
More Decks by Kevin Brosnan
See All by Kevin Brosnan
Automated Gating for Flow Cytometry
significantstats
0
200
False Starts in Athletics: Are they truly fair?
significantstats
0
110
False Starts in Athletics: Are they truly fair?
significantstats
0
94
False Start Detection in Elite Athletics
significantstats
0
130
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
150
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
140
Challenges for tertiary level mathematics tutors
significantstats
0
93
Quantile Regression
significantstats
0
150
Forward Modelling of UK Gas Prices
significantstats
0
61
Other Decks in Research
See All in Research
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
470
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
280
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.4k
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
290
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
130
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
440
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
530
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
2
190
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
100
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
380
Featured
See All Featured
Being A Developer After 40
akosma
91
590k
Navigating Weather and Climate Data
rabernat
0
60
A Soul's Torment
seathinner
1
2.1k
Designing for Timeless Needs
cassininazir
0
110
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Unsuck your backbone
ammeep
671
58k
Bash Introduction
62gerente
615
210k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
47k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Visualization
eitanlees
150
16k
The agentic SEO stack - context over prompts
schlessera
0
570
Transcript
ELITE ATHLETICS: IS THE FALSE START DISQUALIFICATION RULE APPROPRIATE? Kevin
Brosnan
None
None
None
None
None
None
None
1998 2004 2010 2016 1 2 3 4 5 8
6 7
1998 2004 2010 2016 Individual Warning 1 2 3 4
5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Individual
Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 False
Start 2: Lane 7 Individual Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 False
Start 2: Lane 7 False Start 3: Lane 7 Lane 7 Athlete Disqualified Individual Warning 1 2 3 4 5 8 6 7
1998 2004 2010 2016 Group Warning 1 2 3 4
5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Group
Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Group
Warning False Start 2: Lane 7 Lane 7 Athlete Disqualified 1 2 3 4 5 8 6 7
1998 2004 2010 2016 Automatic DQ 1 2 3 4
5 8 6 7
1998 2004 2010 2016 Automatic DQ False Start 1: Lane
5 Lane 5 Athlete Disqualified 1 2 3 4 5 8 6 7
None
D A TA
D A TA
D A TA Pretty Pictures
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations R esults
Prof. Andrew Harrison, Department of Physical Education and Sports Sciences,
University of Limerick Dr. Kevin Hayes, Department of Mathematics and Statistics, University of Limerick
THANKS FOR LISTENING QUESTIONS?