Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Elite Athletics: Is the false start disqualific...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kevin Brosnan
May 25, 2016
Research
0
130
Elite Athletics: Is the false start disqualification rule appropriate?
Pint of Science Limerick 2016, JJ Bowles Pub Thomondgate
Kevin Brosnan
May 25, 2016
Tweet
Share
More Decks by Kevin Brosnan
See All by Kevin Brosnan
Automated Gating for Flow Cytometry
significantstats
0
200
False Starts in Athletics: Are they truly fair?
significantstats
0
110
False Starts in Athletics: Are they truly fair?
significantstats
0
100
False Start Detection in Elite Athletics
significantstats
0
130
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
150
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
140
Challenges for tertiary level mathematics tutors
significantstats
0
93
Quantile Regression
significantstats
0
150
Forward Modelling of UK Gas Prices
significantstats
0
61
Other Decks in Research
See All in Research
AWSの耐久性のあるRedis互換KVSのMemoryDBについての論文を読んでみた
bootjp
1
460
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
340
LLMアプリケーションの透明性について
fufufukakaka
0
140
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
160
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
説明可能な機械学習と数理最適化
kelicht
2
940
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
100
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
120
Featured
See All Featured
Become a Pro
speakerdeck
PRO
31
5.8k
Building AI with AI
inesmontani
PRO
1
710
Done Done
chrislema
186
16k
The SEO identity crisis: Don't let AI make you average
varn
0
330
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
190
Chasing Engaging Ingredients in Design
codingconduct
0
110
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
79
How STYLIGHT went responsive
nonsquared
100
6k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
Git: the NoSQL Database
bkeepers
PRO
432
66k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
Transcript
ELITE ATHLETICS: IS THE FALSE START DISQUALIFICATION RULE APPROPRIATE? Kevin
Brosnan
None
None
None
None
None
None
None
1998 2004 2010 2016 1 2 3 4 5 8
6 7
1998 2004 2010 2016 Individual Warning 1 2 3 4
5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Individual
Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 False
Start 2: Lane 7 Individual Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 False
Start 2: Lane 7 False Start 3: Lane 7 Lane 7 Athlete Disqualified Individual Warning 1 2 3 4 5 8 6 7
1998 2004 2010 2016 Group Warning 1 2 3 4
5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Group
Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Group
Warning False Start 2: Lane 7 Lane 7 Athlete Disqualified 1 2 3 4 5 8 6 7
1998 2004 2010 2016 Automatic DQ 1 2 3 4
5 8 6 7
1998 2004 2010 2016 Automatic DQ False Start 1: Lane
5 Lane 5 Athlete Disqualified 1 2 3 4 5 8 6 7
None
D A TA
D A TA
D A TA Pretty Pictures
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations R esults
Prof. Andrew Harrison, Department of Physical Education and Sports Sciences,
University of Limerick Dr. Kevin Hayes, Department of Mathematics and Statistics, University of Limerick
THANKS FOR LISTENING QUESTIONS?