Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Elite Athletics: Is the false start disqualific...
Search
Kevin Brosnan
May 25, 2016
Research
0
120
Elite Athletics: Is the false start disqualification rule appropriate?
Pint of Science Limerick 2016, JJ Bowles Pub Thomondgate
Kevin Brosnan
May 25, 2016
Tweet
Share
More Decks by Kevin Brosnan
See All by Kevin Brosnan
Automated Gating for Flow Cytometry
significantstats
0
190
False Starts in Athletics: Are they truly fair?
significantstats
0
100
False Starts in Athletics: Are they truly fair?
significantstats
0
90
False Start Detection in Elite Athletics
significantstats
0
130
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
140
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
130
Challenges for tertiary level mathematics tutors
significantstats
0
90
Quantile Regression
significantstats
0
150
Forward Modelling of UK Gas Prices
significantstats
0
57
Other Decks in Research
See All in Research
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
500
[論文紹介] iTransformer: Inverted Transformers Are Effective for Time Series Forecasting
shiba4839
0
130
AWS 音声基盤モデル トーク解析AI MiiTelの音声処理について
ken57
0
200
CARMUI-NET:自動運転車遠隔監視のためのバーチャル都市プラットフォームにおける通信品質変動機能の開発と評価 / UBI85
yumulab
0
120
IM2024
mamoruk
0
260
RapidPen: AIエージェントによるペネトレーションテスト 初期侵入全自動化の研究
laysakura
0
330
請求書仕分け自動化での物体検知モデル活用 / Utilization of Object Detection Models in Automated Invoice Sorting
sansan_randd
0
160
Self-supervised audiovisual representation learning for remote sensing data
satai
3
110
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
350
SkySense : A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery
satai
3
110
言語モデルの内部機序:解析と解釈
eumesy
PRO
35
15k
Intrinsic Self-Supervision for Data Quality Audits
fabiangroeger
0
480
Featured
See All Featured
Designing for Performance
lara
608
69k
Optimising Largest Contentful Paint
csswizardry
36
3.2k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.3k
Into the Great Unknown - MozCon
thekraken
37
1.7k
The Cult of Friendly URLs
andyhume
78
6.3k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
390
The Art of Programming - Codeland 2020
erikaheidi
53
13k
RailsConf 2023
tenderlove
30
1.1k
A designer walks into a library…
pauljervisheath
205
24k
[RailsConf 2023] Rails as a piece of cake
palkan
54
5.4k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
13
670
Transcript
ELITE ATHLETICS: IS THE FALSE START DISQUALIFICATION RULE APPROPRIATE? Kevin
Brosnan
None
None
None
None
None
None
None
1998 2004 2010 2016 1 2 3 4 5 8
6 7
1998 2004 2010 2016 Individual Warning 1 2 3 4
5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Individual
Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 False
Start 2: Lane 7 Individual Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 False
Start 2: Lane 7 False Start 3: Lane 7 Lane 7 Athlete Disqualified Individual Warning 1 2 3 4 5 8 6 7
1998 2004 2010 2016 Group Warning 1 2 3 4
5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Group
Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Group
Warning False Start 2: Lane 7 Lane 7 Athlete Disqualified 1 2 3 4 5 8 6 7
1998 2004 2010 2016 Automatic DQ 1 2 3 4
5 8 6 7
1998 2004 2010 2016 Automatic DQ False Start 1: Lane
5 Lane 5 Athlete Disqualified 1 2 3 4 5 8 6 7
None
D A TA
D A TA
D A TA Pretty Pictures
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations R esults
Prof. Andrew Harrison, Department of Physical Education and Sports Sciences,
University of Limerick Dr. Kevin Hayes, Department of Mathematics and Statistics, University of Limerick
THANKS FOR LISTENING QUESTIONS?