Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Elite Athletics: Is the false start disqualific...
Search
Kevin Brosnan
May 25, 2016
Research
0
130
Elite Athletics: Is the false start disqualification rule appropriate?
Pint of Science Limerick 2016, JJ Bowles Pub Thomondgate
Kevin Brosnan
May 25, 2016
Tweet
Share
More Decks by Kevin Brosnan
See All by Kevin Brosnan
Automated Gating for Flow Cytometry
significantstats
0
200
False Starts in Athletics: Are they truly fair?
significantstats
0
100
False Starts in Athletics: Are they truly fair?
significantstats
0
90
False Start Detection in Elite Athletics
significantstats
0
130
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
140
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
140
Challenges for tertiary level mathematics tutors
significantstats
0
90
Quantile Regression
significantstats
0
150
Forward Modelling of UK Gas Prices
significantstats
0
58
Other Decks in Research
See All in Research
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
840
「エージェントって何?」から「実際の開発現場で役立つ考え方やベストプラクティス」まで
mickey_kubo
0
130
ノンパラメトリック分布表現を用いた位置尤度場周辺化によるRTK-GNSSの整数アンビギュイティ推定
aoki_nosse
0
340
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
1k
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
230
Combinatorial Search with Generators
kei18
0
490
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3k
NLP Colloquium
junokim
1
180
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
7
1.1k
Vision And Languageモデルにおける異なるドメインでの継続事前学習が性能に与える影響の検証 / YANS2024
sansan_randd
1
130
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
640
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
49
14k
Embracing the Ebb and Flow
colly
86
4.8k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Fireside Chat
paigeccino
37
3.6k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
870
Adopting Sorbet at Scale
ufuk
77
9.5k
Statistics for Hackers
jakevdp
799
220k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Six Lessons from altMBA
skipperchong
28
3.9k
Transcript
ELITE ATHLETICS: IS THE FALSE START DISQUALIFICATION RULE APPROPRIATE? Kevin
Brosnan
None
None
None
None
None
None
None
1998 2004 2010 2016 1 2 3 4 5 8
6 7
1998 2004 2010 2016 Individual Warning 1 2 3 4
5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Individual
Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 False
Start 2: Lane 7 Individual Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 False
Start 2: Lane 7 False Start 3: Lane 7 Lane 7 Athlete Disqualified Individual Warning 1 2 3 4 5 8 6 7
1998 2004 2010 2016 Group Warning 1 2 3 4
5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Group
Warning 1 2 3 4 5 8 6 7
False Start 1: Lane 5 1998 2004 2010 2016 Group
Warning False Start 2: Lane 7 Lane 7 Athlete Disqualified 1 2 3 4 5 8 6 7
1998 2004 2010 2016 Automatic DQ 1 2 3 4
5 8 6 7
1998 2004 2010 2016 Automatic DQ False Start 1: Lane
5 Lane 5 Athlete Disqualified 1 2 3 4 5 8 6 7
None
D A TA
D A TA
D A TA Pretty Pictures
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations
D A TA Pretty Pictures f ( RT|µ, , ⌧
) = 1 ⌧ exp nµ ⌧ + 2 2⌧2 RT ⌧ o ✓RT µ 2 ⌧ ◆ M odelling Recommendations R esults
Prof. Andrew Harrison, Department of Physical Education and Sports Sciences,
University of Limerick Dr. Kevin Hayes, Department of Mathematics and Statistics, University of Limerick
THANKS FOR LISTENING QUESTIONS?