Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Markov Random Fields Approach to the Gating o...
Search
Kevin Brosnan
June 15, 2016
Research
0
140
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
Reasearch Students Conference Dublin 2016. Best talk prize awarded.
Kevin Brosnan
June 15, 2016
Tweet
Share
More Decks by Kevin Brosnan
See All by Kevin Brosnan
Automated Gating for Flow Cytometry
significantstats
0
200
False Starts in Athletics: Are they truly fair?
significantstats
0
110
False Starts in Athletics: Are they truly fair?
significantstats
0
91
False Start Detection in Elite Athletics
significantstats
0
130
A Markov Random Fields Approach to the Gating of Flow Cytometry Data
significantstats
0
150
Challenges for tertiary level mathematics tutors
significantstats
0
93
Elite Athletics: Is the false start disqualification rule appropriate?
significantstats
0
130
Quantile Regression
significantstats
0
150
Forward Modelling of UK Gas Prices
significantstats
0
61
Other Decks in Research
See All in Research
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
290
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1k
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
630
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
350
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
16k
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
410
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
420
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4.4k
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
160
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1k
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
450
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.5k
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
Producing Creativity
orderedlist
PRO
348
40k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Writing Fast Ruby
sferik
630
62k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Designing for Performance
lara
610
69k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Why Our Code Smells
bkeepers
PRO
340
57k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Facilitating Awesome Meetings
lara
57
6.7k
Transcript
A M A R KO V R A N D
O M F I E L D S A P P ROA C H T O T H E GAT I N G O F F LO W C Y T O M E T R Y DATA K e v i n B r o s n a n , U n i v e r s i t y O f L i m e r i c k
P R E S E N TAT I O N
OU T L I N E Flow Cytometry Existing methods Markov Random Fields Identifying Clusters Results Further Work
F LO W C Y T O M E T
R Y …
W h at i s f lo w c y
to m et r y ?
W h at i s f lo w c y
to m et r y ? Flow
W h at i s f lo w c y
to m et r y ? Flow Cyto
W h at i s f lo w c y
to m et r y ? Flow Cyto metry
F lo w c y to m et r y
d at a … Mean St. Dev. Min Max FSC.H 287.08 178.19 59 1, 023 SSC.H 251.83 186.65 11 1, 023 FL1.H 349.16 234.35 0 974 FL2.H 126.40 90.84 0 705 FL3.H 258.34 192.26 1 1, 023 FL1.A 73.46 195.15 0 1, 023 FL1.W 17.60 56.39 0 444
F lo w c y to m et r y
d at a …
S p ars i t y … Statistic N Mean
St. Dev. Min Max FSC.H 1, 545 71.40 44.53 14 255 SSC.H 1, 545 62.57 46.65 2 255 FL1.H 1, 545 86.93 58.58 0 243 FL2.H 1, 545 31.27 22.66 0 176 FL3.H 1, 545 64.20 48.03 0 255 FL1.A 1, 545 18.25 48.65 0 255 FL1.W 1, 545 4.33 14.01 0 111 time 1, 545 294.04 177.55 2 598
S p ars i t y …
E X I S T I N G M E
T H O D S …
I n d u s t r y S t
a n d ar d …
I n d u s t r y S t
a n d ar d … 6= Expert 2 Expert 1
M o d e l B a s e d
C lu s t er i ng …
t- d i s t r i b u t
i o n M i x t u re s …
t- d i s t r i b u t
i o n M i x t u re s …
M A R KO V R A N D O
M F I E L D S …
X0,0 X1,0 X2,0 X3,0 X0,1 X1,1 X2,1 X3,1 X0,2 X1,2
X2,2 X3,2 X0,3 X1,3 X2,3 X3,3
X0,0 X1,0 X2,0 X3,0 X0,1 X1,1 X2,1 X3,1 X0,2 X1,2
X2,2 X3,2 X0,3 X1,3 X2,3 X3,3
X0,0 X1,0 X2,0 X3,0 X0,1 X1,1 X2,1 X3,1 X0,2 X1,2
X2,2 X3,2 X0,3 X1,3 X2,3 X3,3
X0,0 X1,0 X2,0 X3,0 X0,1 X1,1 X2,1 X3,1 X0,2 X1,2
X2,2 X3,2 X0,3 X1,3 X2,3 X3,3
Wo r k i ng E xam p le …
Wo r k i ng E xam p le …
I D E N T I F Y I N
G C LU S T E RS …
C o n n e ct e d - C
o m p o n e nt s …
C o n n e ct e d - C
o m p o n e nt s …
R E S U LT S …
6 -b i t co n f i g u
r at i o n …
6 -b i t co n f i g u
r at i o n …
6 -b i t co n f i g u
r at i o n …
F U RT H E R WO R K …
None
None
None
None
T H A N K S F O R L
I S T E N I N G ! A N Y Q U E S T I O N S ?