Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Adequate Full Text Search
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Florian Gilcher
November 25, 2014
Programming
1
160
Adequate Full Text Search
given at Elasticsearch UG in November 2014
Florian Gilcher
November 25, 2014
Tweet
Share
More Decks by Florian Gilcher
See All by Florian Gilcher
A new contract with users
skade
1
510
Using Rust to interface with my dive computer
skade
0
280
async/.await with async-std
skade
1
800
Training Rust
skade
1
130
Internet of Streams - IoT in Rust
skade
0
110
How DevRel is failing communities
skade
0
110
The power of the where clause
skade
0
670
Three Years of Rust
skade
1
210
Rust as a CLI language
skade
1
220
Other Decks in Programming
See All in Programming
組織で育むオブザーバビリティ
ryota_hnk
0
170
Basic Architectures
denyspoltorak
0
660
FOSDEM 2026: STUNMESH-go: Building P2P WireGuard Mesh Without Self-Hosted Infrastructure
tjjh89017
0
140
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
400
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
180
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
160
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
17
6k
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
220
Data-Centric Kaggle
isax1015
2
750
2026年 エンジニアリング自己学習法
yumechi
0
130
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
0
860
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
980
Featured
See All Featured
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
54
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
230
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
420
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
120
The Curious Case for Waylosing
cassininazir
0
230
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
160
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
100k
Transcript
None
$ cat .profile GIT_AUTHOR_NAME=Florian Gilcher
[email protected]
TM_COMPANY=Asquera GmbH TWITTER_HANDLE=argorak GITHUB_HANDLE=skade
• Backend developer • Focused on infrastructure and databases
• Elasticsearch Usergroup • mrgn.in meetup • Rust Usergroup (co-org)
• organizer alumni eurucamp • organizer alumni JRubyConf.EU • Ruby Berlin board member
Adequate Full Text Search
The evaluation problem
Given almost no time and an unknown problem space, how
do I evaluate "fitness for purpose"?
You can't
Given almost no time and only a glimpse of the
problem space, how do I evaluate "fitness for purpose"?
How much of a glimpse do I need?
In this talk, I’ll present: • a solution unfit for
purpose • a solution fit for purpose, but only in cer- tain boundaries • a comparison to a fully fledged solution
To the daily practitioners: I’ll gloss over a lot of
points.
• Elasticsearch • PostgreSQL • MongoDB
Issue 1 Search systems are not binary. Faults in the
system degrade the quality of the system, rarely break it.
Issue 2 Full text searchers are far more focused on
inputs then on output.
Building Block 1 An inverted index
doc id content 0 "Überlin ist auf Twitter" 1 "Ich
bin auf Twitter" 2 "Ich folge Überlin"
terms document ids uberlin 0,2 twitter 0,1 bin 1 ich
1,2 auf 0,1
Initial search rules are easy: if one or more of
the terms to the left is searched for, find the document that matches. Count the matches.
Building Block 2 Textual input
Full text searchers generally work on real world text. Get
hold of as many samples as possible. If necessary, write some on your own.
Don’t use an random generator. Or spend your next weeks
writing a sophisticated one.
Your system should bring capabilities handling real world text.
Analysis
Analysis determines which terms end up at the left side
of the table in the first place.
analysis result "ich folge Überlin" whitespace "ich" "folge" "Überlin" lowercase
"ich" "folge" "überlin" normalize "ich" "folge" "uberlin" stemming "ich" "folg" "uberlin"
analysis result "ich folge ueberlin" whitespace "ich" "folge" "ueberlin" lowercase
"ich" "folge" "ueberlin" normalize "ich" "folge" "ueberlin" stemming "ich" "folg" "uberlin"
This step happens both on indexing and queries.
Manipulating analysis is the basis for manipulating matches.
Can I manipulate analysis?
MongoDB Only choose between language presets PostgreSQL Analysis happens through
normal PL/SQL functions Elasticsearch Analyser configura- tion with a wide vari- ety of choice
Ü
Does your system comfortably speak Unicode?
doc id field value 1 Test 2 test 3 Überlin
token doc ids test 1,2 uberlin 3
MongoDB
search term no. matches Test 2 test 2 Überlin 1
überlin 0
token doc ids test 1,2 Überlin 3
input result überlin überlin Überlin Überlin
MongoDB fails at the simplest case, lowercasing german umlauts, in
german settings.
The exact analysis behaviour is not user-controllable, for simplicities sake.
The suggestion is to preprocess yourself.
None
Further down the Unicode
How well does you system handle "creative" codes?
"\u0055\u0308" "\u0075\u0308"
"\u0055\u0308" #=> Ü "\u0075\u0308" #=> ü
PostgreSQL
postgres=# SELECT unaccent(U&’\0075\0308’); unaccent ———- ü (1 row)
PostgreSQL handles UCS-2 level 1, not UTF.
No combining chars.
“ we should really reject combining chars, but can’t do
that w/o breaking BC.”
sigh, Software
If you use PostgreSQL and text manipulation, you probably have
a bug in the hiding there.
UCS-2 for all textual data is a doable constraint, though.
input result überlin überlin Überlin überlin \u0055 \u0308 Invalid input
\u0075 \u0308 Invalid input
Elasticsearch
Elasticsearch can handle all those cases and then some, using
the analysis-icu plugin.
Install it and use it.
curl -XGET ’localhost:9200/_analyze?\ tokenizer=\ icu_tokenizer\ &token_filters=\ icu_folding,icu_normalizer’\ -d ’Überlin’
input result überlin uberlin Überlin uberlin \u0055 \u0308 uberlin \u0075
\u0308 uberlin
The way the system supports you in safely inserting textual
input is of paramount importance!
Find the worst shenanegans of you language, try it out.
l’elision, c’est magnifique
Building Block 3 Scoring
Search is all about relevance and combinations thereof.
Was the match in the title or the body of
a document?
How many options do I have?
All three systems can weight matches on fields differently.
When can I decide those weights?
database index time query time MongoDB yes no PostgreSQL yes
no Elasticsearch yes yes
Weights during index time need a rebuild of the index
every time you change them.
If in doubt, choose query time weights.
Can I influence the scoring/ranking further?
database MongoDB no PostgreSQL yes, using PL/SQL functions Elasticsearch yes,
in many fashions (geo, distance, etc.)
Building Block 4 Documentation
I glossed over a lot of details.
How well is the process documented, internally and interface-wise?
database interface internal MongoDB good almost non-existent PostgreSQL great great
Elasticsearch great great
Can I grow beyond?
And this is where the fun starts and we stop.
What’s adequate?
• Allows to manipulate analysis • Assists with real world
input • Allows you to build combined, extensible queries • Good documentation
MongoDB is not fit for purpose with holes that can
only be fixed by careful preparation of that data.
That preparation needs lots of detail knowledge you probably don’t
want to aquire.
PostgreSQL is adequate and in the PostgreSQL tradition of stable,
well-documented features. It doesn’t win prices, but is workable and reliable.
A good solution if search is just a bystander. A
thousand times better than LIKE.
Elasticsearch is based on Lucene and comes with all the
goodies and also has great documentations and guides.
If search is at the core of your product, use
a proper search engine.
References on the meetup group tomorrow.
Thank you!
None
COURSES
Elasticsearch for managers: http://esmanagers2014.asquera.de/
None
December 2nd
Getting started workshop: http://purchases.elastic- search.com/class/elasticsearch/elk-work- shop/berlin-germany/2014-12-15
None
December 15th