Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIエージェントに脈アリかどうかを分析させてみた
Search
そのだ
December 26, 2024
Technology
2
230
AIエージェントに脈アリかどうかを分析させてみた
【connpass】
にんにんLT
https://connpass.com/event/335957/
そのだ
December 26, 2024
Tweet
Share
More Decks by そのだ
See All by そのだ
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
0
710
Amazon Bedrock Knowledge Basesに Data Autometionを導入してみた
sonoda_mj
1
52
Amazon Bedrock Knowledge basesにLangfuse導入してみた
sonoda_mj
2
720
Amazon Bedrock Knowledge Basesのアップデート紹介
sonoda_mj
2
450
Snowflake未経験の人がSnowflakeに挑戦してみた
sonoda_mj
1
120
生成AIアプリのアップデートと配布の課題をCDK Pipelinesで解決してみた
sonoda_mj
0
430
AWSでRAGを作る方法
sonoda_mj
1
530
緑一色アーキテクチャ
sonoda_mj
2
280
RAG構築におけるKendraとPineconeの使い分け
sonoda_mj
2
920
Other Decks in Technology
See All in Technology
OCI Oracle Database Services新機能アップデート(2025/03-2025/05)
oracle4engineer
PRO
1
170
菸酒生在 LINE Taiwan 的後端雙刀流
line_developers_tw
PRO
0
230
Clineを含めたAIエージェントを 大規模組織に導入し、投資対効果を考える / Introducing AI agents into your organization
i35_267
1
410
Amplifyとゼロからはじめた AIコーディング 成果と展望
mkdev10
1
300
What's new in OpenShift 4.19
redhatlivestreaming
1
290
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
7.4k
JSX - 歴史を振り返り、⾯⽩がって、エモくなろう
pal4de
3
980
Devin(Deep) Wiki/Searchの活用で変わる開発の世界観/devin-wiki-search-impact
tomoki10
0
460
TODAY 看世界(?) 是我們在看扣啦!
line_developers_tw
PRO
0
250
技術職じゃない私がVibe Codingで感じた、AGIが身近になる未来
blueb
0
130
API の仕様から紐解く「MCP 入門」 ~MCP の「コンテキスト」って何だ?~
cdataj
0
170
AWS全冠したので振りかえってみる
tajimon
0
150
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
Site-Speed That Sticks
csswizardry
10
640
Become a Pro
speakerdeck
PRO
28
5.4k
Being A Developer After 40
akosma
90
590k
For a Future-Friendly Web
brad_frost
179
9.8k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
How GitHub (no longer) Works
holman
314
140k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
We Have a Design System, Now What?
morganepeng
52
7.6k
Transcript
©Fusic Co., Ltd. 1 CONFIDENTIAL AIエージェントに脈アリかどうかを 分析させてみた 2024.12.26 苑田 朝彰
@sonoda_mj にんにんLT
©Fusic Co., Ltd. 2 苑田 朝彰 Sonoda Tomotada - X:
sonoda_mj - 2023 AWS Jr.Champions - 2024 AWS Community Builders (ML & GenAI) - 2024 Japan AWS Top Engineers (Services) - 甲賀流忍者検定(初級)/ スパルタン コメント 最近スパルタンになりました。 自己紹介 はじめに 株式会社Fusic
©Fusic Co., Ltd. 3 苑田 朝彰 Sonoda Tomotada - X:
sonoda_mj - 2023 AWS Jr.Champions - 2024 AWS Community Builders (ML & GenAI) - 2024 Japan AWS Top Engineers (Services) - 甲賀流忍者検定(初級)/ スパルタン コメント 最近スパルタンになりました。 自己紹介 はじめに 株式会社Fusic
©Fusic Co., Ltd. 4 CONTENTS 目次 1. 背景 2. AIエージェントに脈アリかどうかを分析させてみた
3. まとめ
©Fusic Co., Ltd. 5 背景 1
©Fusic Co., Ltd. 6 みなさん
©Fusic Co., Ltd. 7 その恋愛が脈アリか
©Fusic Co., Ltd. 8 知りたくないですか?
©Fusic Co., Ltd. 9 連絡をとっている人が 脈アリかどうかわかればなぁ
©Fusic Co., Ltd. 10 相手が何を考えてるか わからないよ・・・
©Fusic Co., Ltd. 11 エンジニアなら
©Fusic Co., Ltd. 12 面倒なことは
©Fusic Co., Ltd. 13 自動化する!!
©Fusic Co., Ltd. 14 どうやって 自動化しよう・・・
©Fusic Co., Ltd. 15 様々なアプリケーション
©Fusic Co., Ltd. 16 メッセージをAIに 分析してもらおう!
©Fusic Co., Ltd. 17 イメージはこんな感じ
©Fusic Co., Ltd. 18 AIエージェント ユーザー 「hogehoge」って来たんだけど 脈あると思います???
©Fusic Co., Ltd. 19 AIエージェント ユーザー ギリ脈アリかもね
©Fusic Co., Ltd. 20 AIエージェント ユーザー 告白しよう!
©Fusic Co., Ltd. 21 AIに脈アリか分析させてみた 2
©Fusic Co., Ltd. 22 今回の課題 • テキストでのやりとりで脈アリかどうかがわからない • 誰に相談したらいいかわからない
©Fusic Co., Ltd. 23 構成図 Amazon Bedrock Agents Amazon Bedrock
Knowledge Bases Amazon OpenSearch Service Amazon Bedrock Agents Amazon Bedrock Knowledge Bases Pinecone Serverless Amazon Bedrock Agents Amazon Bedrock Knowledge Bases Pinecone Serverless S3 S3 ウェブサイト Multi-Agent Collaboration ユーザー 恋愛サイトに詳しいAIエージェント 脈アリに特化したAIエージェント Claudeが考えた脳筋AIエージェント
©Fusic Co., Ltd. 24 AI21 Labs、Anthropic、Cohere、Meta、Stability AI、Amazon などの大手 AI 企業が提供する高性能な基盤モ
デル (FM) を単一の API で選択できるフルマネージド型サービス Amazon Bedrock 引用: https://aws.amazon.com/jp/bedrock/
©Fusic Co., Ltd. 25 複雑な目標を自律的に遂行できるAIシステム。すなわち、与えられた目標を達成するために必要な行動を自ら決定し、実 行することができる。 AIエージェントとは ユーザー AIエージェント LLMによる思考
インターネットやDBから 情報収集 プログラムの生成・実行
©Fusic Co., Ltd. 26 複雑な目標を自律的に遂行できるAIシステム。すなわち、与えられた目標を達成するために必要な行動を自ら決定し、実 行することができる。 AIエージェントとは ユーザー AIエージェント LLMによる思考
インターネットやDBから 情報収集 プログラムの生成・実行 旅館の部屋を予約したい
©Fusic Co., Ltd. 27 複雑な目標を自律的に遂行できるAIシステム。すなわち、与えられた目標を達成するために必要な行動を自ら決定し、実 行することができる。 AIエージェントとは ユーザー AIエージェント LLMによる思考
インターネットやDBから 情報収集 プログラムの生成・実行 1. 何が必要か考える 2. DBから空いてる部屋を検索 3. 料金込みで提案する
©Fusic Co., Ltd. 28 アプリケーション内で自律型エージェントを構築して設定することができ、組織のデータとユーザー入力に 基づいてエンドユーザーがアクションを実行するのに役立つ。 Amazon Bedrock Agents 引用:https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/agents.html
ユーザー (緑アイコン) Pinecone Serverless
©Fusic Co., Ltd. 29 ユーザー (緑アイコン) アプリケーション内で自律型エージェントを構築して設定することができ、組織のデータとユーザー入力に 基づいてエンドユーザーがアクションを実行するのに役立つ。 Amazon Bedrock
Agents 引用:https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/agents.html Pinecone Serverless
©Fusic Co., Ltd. 30 ユーザー (緑アイコン) アプリケーション内で自律型エージェントを構築して設定することができ、組織のデータとユーザー入力に 基づいてエンドユーザーがアクションを実行するのに役立つ。 Amazon Bedrock
Agents 引用:https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/agents.html Pinecone Serverless 自分の資料を読み込んで賢くなるAI 読み込ませたい資料
©Fusic Co., Ltd. 31 アプリケーション内で自律型エージェントを構築して設定することができ、組織のデータとユーザー入力に 基づいてエンドユーザーがアクションを実行するのに役立つ。 Amazon Bedrock Agents 引用:https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/agents.html
ユーザー (緑アイコン) Pinecone Serverless
©Fusic Co., Ltd. 32 アプリケーション内で自律型エージェントを構築して設定することができ、組織のデータとユーザー入力に 基づいてエンドユーザーがアクションを実行するのに役立つ。 Amazon Bedrock Agents 引用:https://docs.aws.amazon.com/ja_jp/bedrock/latest/userguide/agents.html
ユーザー (緑アイコン) Pinecone Serverless Lambdaを実行できる
©Fusic Co., Ltd. 33 複数のAIエージェントが協力して一つのタスクを遂行する。各エージェントはそれぞれ特定の役割を持ち、独立して動作 します。 マルチエージェントシステム 引用:https://note.com/fujitsu_pr/n/n2b1b3ebfc78a ユーザー レストラン予約
エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント
©Fusic Co., Ltd. 34 複数のAmazon Bedrock Agentsが協力し、複雑なタスクを解決する Amazon Bedrock Multi-Agent
Collaboration(プレビュー版) 引用: https://docs.aws.amazon.com/bedrock/latest/userguide/agents-multi-agent-collaboration.html ユーザー レストラン予約 エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント スーパーバイザー 特定のユースケースに合わせて最適化された コラボレーター達
©Fusic Co., Ltd. 35 複数のAmazon Bedrock Agentsが協力し、複雑なタスクを解決する Amazon Bedrock Multi-Agent
Collaboration(プレビュー版) 引用: https://docs.aws.amazon.com/bedrock/latest/userguide/agents-multi-agent-collaboration.html ユーザー レストラン予約 エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント スーパーバイザー 特定のユースケースに合わせて最適化された コラボレーター達 いい感じに旅行プラン 作ってください
©Fusic Co., Ltd. 36 複数のAmazon Bedrock Agentsが協力し、複雑なタスクを解決する Amazon Bedrock Multi-Agent
Collaboration(プレビュー版) 引用: https://docs.aws.amazon.com/bedrock/latest/userguide/agents-multi-agent-collaboration.html ユーザー レストラン予約 エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント スーパーバイザー 特定のユースケースに合わせて最適化された コラボレーター達 適切なコラボレーターに 質問をルーティングする
©Fusic Co., Ltd. 37 複数のAmazon Bedrock Agentsが協力し、複雑なタスクを解決する Amazon Bedrock Multi-Agent
Collaboration(プレビュー版) 引用: https://docs.aws.amazon.com/bedrock/latest/userguide/agents-multi-agent-collaboration.html ユーザー レストラン予約 エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント スーパーバイザー 特定のユースケースに合わせて最適化された コラボレーター達 京都とかどうや? 新幹線で行くんやで 京都駅近くに ええホテルあるで
©Fusic Co., Ltd. 38 複数のAmazon Bedrock Agentsが協力し、複雑なタスクを解決する Amazon Bedrock Multi-Agent
Collaboration(プレビュー版) 引用: https://docs.aws.amazon.com/bedrock/latest/userguide/agents-multi-agent-collaboration.html ユーザー レストラン予約 エージェント ホテル エージェント 観光スポット エージェント 交通手段 エージェント コーディネーター エージェント スーパーバイザー 特定のユースケースに合わせて最適化された コラボレーター達 福岡からやと新幹線で 京都行くとええで! ホテルは京都駅な!
©Fusic Co., Ltd. 39 構成図(再掲) Amazon Bedrock Agents Amazon Bedrock
Knowledge Bases Amazon OpenSearch Service Amazon Bedrock Agents Amazon Bedrock Knowledge Bases Pinecone Serverless Amazon Bedrock Agents Amazon Bedrock Knowledge Bases Pinecone Serverless S3 S3 ウェブサイト Multi-Agent Collaboration ユーザー 恋愛サイトに詳しいAIエージェント 脈アリに特化したAIエージェント Claudeが考えた脳筋AIエージェント
©Fusic Co., Ltd. 40 デモ
©Fusic Co., Ltd. 41 参考本 AIエージェントについて学べる Bedrockについて学べる
©Fusic Co., Ltd. 42 参考サイト(ハンズオン) 引用:https://github.com/aws-samples/bedrock-multi-agents-collaboration-workshop?tab=readme-ov-file
©Fusic Co., Ltd. 43 まとめ 3
©Fusic Co., Ltd. 44 まとめ AIエージェントを使用することで、脈アリかどうかを判断することができた Point 01 Amazon Bedrock
Agentsを使用することで、簡単にAIエージェントを構築できた Point 02 Amazon Bedrock Multi-Agent Collaborationを使用することで、簡単にマルチエージェントを構築できた Point 03
©Fusic Co., Ltd. 45 Thank You We are Hiring! https://recruit.fusic.co.jp/
ご清聴ありがとうございました!