[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PlonK: Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. IACR Cryptol. ePrint Arch., 2019, 953. • [But19] Vitalik Buterin. Understanding PLONK. Vitalik Buterin's website. https://vitalik.ca/index.html ,2019 (Accessed on 09/03/2021). • [KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and their applications. In International conference on the theory and application of cryptology and information security (pp. 177-194). Springer, Berlin, Heidelberg, 2010. • [Fei20] Dankrad Feist. KZG polynomial commitments. https://dankradfeist.de/ethereum/2020/06/16/kate- polynomial-commitments.html , 2020 (Accessed on 09/03/2021). • [Har11] Nick Harvey. CPSC 536N: Randomized Algorithms, Lecture 9. https://www.cs.ubc.ca/~nickhar/W12/ Lecture9Notes.pdf , 2011 (Accessed on 09/04/2021). • [Ll21] Star Ll. ZKP— PlonK Algorithm Introduction. https://starli.medium.com/zkp-plonk-algorithm- introduction-834556a32a , 2021 (Accessed on 09/03/2021). • [Fit20] Joshua Fitzgerald. PLONK by Hand (Part 1: Setup), METASTATE TEAM. https://research.metastate.dev/plonk- by-hand-part-1/ , 2020 (Accessed on 09/03/2021). • [ASTTM16] ༗ా ਖ਼߶, ڥ ོҰ, ଠ, ᪅ ً৾, দඌ ਓ, ҉߸ཧͱପԁۂઢ, ग़൛גࣜձࣾ, 2016. • [Gro16] Jens Groth. On the Size of Pairing-based Non-interactive Arguments. In Annual international conference on the theory and applications of cryptographic techniques (pp. 305-326). Springer, Berlin, Heidelberg, 2016. • [BBB18] Benedikt BÜNZ, et al. Bulletproofs: Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018. p. 315-334. • [BBH18] Eli Ben-Sasson, et al. Scalable, transparent, and post-quantum secure computational integrity. Cryptology ePrint Archive, 2018. • [SP19] Kineret Segal and Shir Peled. Arithmetization I, StarkWare, Medium. https://medium.com/starkware/ arithmetization-i-15c046390862, 2019 (Accessed on 05/25/2022).