Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ElasticSearch Overview
Search
ssinganamalla
July 03, 2017
Technology
0
54
ElasticSearch Overview
ssinganamalla
July 03, 2017
Tweet
Share
More Decks by ssinganamalla
See All by ssinganamalla
Graphite Overview
ssinganamalla
0
27
NoSql Data DBs
ssinganamalla
1
32
NoSqlDataTypes.pdf
ssinganamalla
0
28
Other Decks in Technology
See All in Technology
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.4k
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
140
20260204_Midosuji_Tech
takuyay0ne
1
160
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
190
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
0
1.2k
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
660
Context Engineeringの取り組み
nutslove
0
350
OpenShiftでllm-dを動かそう!
jpishikawa
0
110
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.5k
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.1k
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
150
Featured
See All Featured
How GitHub (no longer) Works
holman
316
140k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Why Our Code Smells
bkeepers
PRO
340
58k
The browser strikes back
jonoalderson
0
370
A better future with KSS
kneath
240
18k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
57
50k
New Earth Scene 8
popppiees
1
1.5k
Chasing Engaging Ingredients in Design
codingconduct
0
110
Scaling GitHub
holman
464
140k
How to Talk to Developers About Accessibility
jct
2
130
Transcript
ElasticSearch Srinivas Singanamalla
2 ElasticSearch Search Analytics Schema-less JSON Engine Java based Lucene
Opensource* Near Real Time Distributed Scalable
3 Google Trends
4
5 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User No
intent of gender discrimination
6 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User
7
8 Faceboook Post
9 Full Text Search • Query – message: “color pink”
• Results – “Why do girls have to like color pink ?” – “Pink and blue arrived as color for babies in the mid-19th century” – “I love to color blue” – “This blue color is amazing”
10 Phrase Search • Query – message: “blue color” •
Results – “This blue color is amazing”
11 Highlighting Search • Query – message: “elasticsearch” • Results
12 Social Likeability: The number of likes you get in
your social media content.
13 Numeric Search • Query – likes: 50 • Results
– None
14 Numeric Range Search • Query – likes > 50
• Results – “Let us get together and drain that swamp tomorrow” – “How could the polls be so wrong?”
15 Call me? 312 4?9 2868
16 Fuzzy Search • Query – message: “312492868” • Results
– “It is not good to share phone numbers, but here it is: 6312492868” – “Utility Bill number: 3124928685” – “Bel me 3124892868” 312 4?9 2868
17
18 Search Suggestions • Query – “tring out Elasticsearch” •
Results – “trying out Elasticsearch”
19 Other Searches • Search Boosting – author:douglas OR title:guide^5
• Proximity Search – “douglas guide” • Regular Expressions
20 Aggregations • Count • Sum • Average • Max/Min
• Median • Standard Deviation • Percentile
21 Search Query: REST API
22
23 Aggregation: Sum
24 Aggregation: Average
25 DEMO
26 Search and Aggregations Ingestion Inverted Index Doc Values Search
Aggregation
27 Inverted Index
28 Inverted Index Table Term Document Id Frequency i 1
1 love 1 1 to 1 1 color 1, 2 2 blue 1, 2 2 sky 2 1 amazing 2 1
29 Inverted Index: Numeric Search • Find documents where –
423 < clicks < 642
30 Aggregations: Sum Get me sum of all likes
31 Doc Values (Column Oriented) Doc Id Value 1 10
2 5 3 120 Likes Likes: [10, 5, 120] Getting all the likes is super fast Sum: 10 + 5 + 120 = 135
32 Filtered Sum Get me sum of all likes containing
“elasticsearch”
33 Filtered Sum • “Likes” field values: [10, 5, 120]
• query_bits: [0, 1, 1] • Apply_query: [0, 5, 120] • Calculate Sum 0 + 5 + 120 = 125
34 How can we use ES? API Server RDBMS ElasticSearch
35 How can we use ES?
36 Finally Ask not what ElasticSearch can do for you
-- ask what you can do with ElasticSearch.
37 • Icons are taken from http://www.freepik.com/