Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ElasticSearch Overview
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
ssinganamalla
July 03, 2017
Technology
0
54
ElasticSearch Overview
ssinganamalla
July 03, 2017
Tweet
Share
More Decks by ssinganamalla
See All by ssinganamalla
Graphite Overview
ssinganamalla
0
27
NoSql Data DBs
ssinganamalla
1
32
NoSqlDataTypes.pdf
ssinganamalla
0
28
Other Decks in Technology
See All in Technology
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
450
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
180
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
240
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
440
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
150
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
450
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
210
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
110
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.9k
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
300
Featured
See All Featured
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
120
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
780
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Why Our Code Smells
bkeepers
PRO
340
58k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Rails Girls Zürich Keynote
gr2m
96
14k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
The Curious Case for Waylosing
cassininazir
0
240
Transcript
ElasticSearch Srinivas Singanamalla
2 ElasticSearch Search Analytics Schema-less JSON Engine Java based Lucene
Opensource* Near Real Time Distributed Scalable
3 Google Trends
4
5 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User No
intent of gender discrimination
6 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User
7
8 Faceboook Post
9 Full Text Search • Query – message: “color pink”
• Results – “Why do girls have to like color pink ?” – “Pink and blue arrived as color for babies in the mid-19th century” – “I love to color blue” – “This blue color is amazing”
10 Phrase Search • Query – message: “blue color” •
Results – “This blue color is amazing”
11 Highlighting Search • Query – message: “elasticsearch” • Results
12 Social Likeability: The number of likes you get in
your social media content.
13 Numeric Search • Query – likes: 50 • Results
– None
14 Numeric Range Search • Query – likes > 50
• Results – “Let us get together and drain that swamp tomorrow” – “How could the polls be so wrong?”
15 Call me? 312 4?9 2868
16 Fuzzy Search • Query – message: “312492868” • Results
– “It is not good to share phone numbers, but here it is: 6312492868” – “Utility Bill number: 3124928685” – “Bel me 3124892868” 312 4?9 2868
17
18 Search Suggestions • Query – “tring out Elasticsearch” •
Results – “trying out Elasticsearch”
19 Other Searches • Search Boosting – author:douglas OR title:guide^5
• Proximity Search – “douglas guide” • Regular Expressions
20 Aggregations • Count • Sum • Average • Max/Min
• Median • Standard Deviation • Percentile
21 Search Query: REST API
22
23 Aggregation: Sum
24 Aggregation: Average
25 DEMO
26 Search and Aggregations Ingestion Inverted Index Doc Values Search
Aggregation
27 Inverted Index
28 Inverted Index Table Term Document Id Frequency i 1
1 love 1 1 to 1 1 color 1, 2 2 blue 1, 2 2 sky 2 1 amazing 2 1
29 Inverted Index: Numeric Search • Find documents where –
423 < clicks < 642
30 Aggregations: Sum Get me sum of all likes
31 Doc Values (Column Oriented) Doc Id Value 1 10
2 5 3 120 Likes Likes: [10, 5, 120] Getting all the likes is super fast Sum: 10 + 5 + 120 = 135
32 Filtered Sum Get me sum of all likes containing
“elasticsearch”
33 Filtered Sum • “Likes” field values: [10, 5, 120]
• query_bits: [0, 1, 1] • Apply_query: [0, 5, 120] • Calculate Sum 0 + 5 + 120 = 125
34 How can we use ES? API Server RDBMS ElasticSearch
35 How can we use ES?
36 Finally Ask not what ElasticSearch can do for you
-- ask what you can do with ElasticSearch.
37 • Icons are taken from http://www.freepik.com/