Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ElasticSearch Overview
Search
ssinganamalla
July 03, 2017
Technology
0
54
ElasticSearch Overview
ssinganamalla
July 03, 2017
Tweet
Share
More Decks by ssinganamalla
See All by ssinganamalla
Graphite Overview
ssinganamalla
0
27
NoSql Data DBs
ssinganamalla
1
32
NoSqlDataTypes.pdf
ssinganamalla
0
28
Other Decks in Technology
See All in Technology
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
Digitization部 紹介資料
sansan33
PRO
1
6.8k
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
290
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.9k
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
300
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
230
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
230
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
190
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
190
AWS Network Firewall Proxyを触ってみた
nagisa53
1
230
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
76
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
340
Abbi's Birthday
coloredviolet
1
4.7k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
Done Done
chrislema
186
16k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
93
The SEO identity crisis: Don't let AI make you average
varn
0
240
Become a Pro
speakerdeck
PRO
31
5.8k
Music & Morning Musume
bryan
47
7.1k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
Transcript
ElasticSearch Srinivas Singanamalla
2 ElasticSearch Search Analytics Schema-less JSON Engine Java based Lucene
Opensource* Near Real Time Distributed Scalable
3 Google Trends
4
5 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User No
intent of gender discrimination
6 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User
7
8 Faceboook Post
9 Full Text Search • Query – message: “color pink”
• Results – “Why do girls have to like color pink ?” – “Pink and blue arrived as color for babies in the mid-19th century” – “I love to color blue” – “This blue color is amazing”
10 Phrase Search • Query – message: “blue color” •
Results – “This blue color is amazing”
11 Highlighting Search • Query – message: “elasticsearch” • Results
12 Social Likeability: The number of likes you get in
your social media content.
13 Numeric Search • Query – likes: 50 • Results
– None
14 Numeric Range Search • Query – likes > 50
• Results – “Let us get together and drain that swamp tomorrow” – “How could the polls be so wrong?”
15 Call me? 312 4?9 2868
16 Fuzzy Search • Query – message: “312492868” • Results
– “It is not good to share phone numbers, but here it is: 6312492868” – “Utility Bill number: 3124928685” – “Bel me 3124892868” 312 4?9 2868
17
18 Search Suggestions • Query – “tring out Elasticsearch” •
Results – “trying out Elasticsearch”
19 Other Searches • Search Boosting – author:douglas OR title:guide^5
• Proximity Search – “douglas guide” • Regular Expressions
20 Aggregations • Count • Sum • Average • Max/Min
• Median • Standard Deviation • Percentile
21 Search Query: REST API
22
23 Aggregation: Sum
24 Aggregation: Average
25 DEMO
26 Search and Aggregations Ingestion Inverted Index Doc Values Search
Aggregation
27 Inverted Index
28 Inverted Index Table Term Document Id Frequency i 1
1 love 1 1 to 1 1 color 1, 2 2 blue 1, 2 2 sky 2 1 amazing 2 1
29 Inverted Index: Numeric Search • Find documents where –
423 < clicks < 642
30 Aggregations: Sum Get me sum of all likes
31 Doc Values (Column Oriented) Doc Id Value 1 10
2 5 3 120 Likes Likes: [10, 5, 120] Getting all the likes is super fast Sum: 10 + 5 + 120 = 135
32 Filtered Sum Get me sum of all likes containing
“elasticsearch”
33 Filtered Sum • “Likes” field values: [10, 5, 120]
• query_bits: [0, 1, 1] • Apply_query: [0, 5, 120] • Calculate Sum 0 + 5 + 120 = 125
34 How can we use ES? API Server RDBMS ElasticSearch
35 How can we use ES?
36 Finally Ask not what ElasticSearch can do for you
-- ask what you can do with ElasticSearch.
37 • Icons are taken from http://www.freepik.com/