Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ElasticSearch Overview
Search
ssinganamalla
July 03, 2017
Technology
0
54
ElasticSearch Overview
ssinganamalla
July 03, 2017
Tweet
Share
More Decks by ssinganamalla
See All by ssinganamalla
Graphite Overview
ssinganamalla
0
27
NoSql Data DBs
ssinganamalla
1
30
NoSqlDataTypes.pdf
ssinganamalla
0
26
Other Decks in Technology
See All in Technology
[2025-09-30] Databricks Genie を利用した分析基盤とデータモデリングの IVRy の現在地
wxyzzz
0
430
履歴 on Rails: Bitemporal Data Modelで実現する履歴管理/history-on-rails-with-bitemporal-data-model
hypermkt
0
1.9k
Azure SynapseからAzure Databricksへ 移行してわかった新時代のコスト問題!?
databricksjapan
0
110
Tomorrow graphlib, Let us use everybody
hayaosuzuki
0
150
#普通の文系サラリーマンチャレンジ 自分でアプリ開発と電子工作を続けたら人生が変わった
tatsuya1970
0
880
"複雑なデータ処理 × 静的サイト" を両立させる、楽をするRails運用 / A low-effort Rails workflow that combines “Complex Data Processing × Static Sites”
hogelog
3
1.5k
OCI Network Firewall 概要
oracle4engineer
PRO
1
7.7k
C# 14 / .NET 10 の新機能 (RC 1 時点)
nenonaninu
1
1.3k
あなたのWebサービスはAIに自動テストしてもらえる?アクセシビリティツリーで読み解く、AIの『視点』
yusukeiwaki
1
3.5k
「AI駆動PO」を考えてみる - 作る速さから価値のスループットへ:検査・適応で未来を開発 / AI-driven product owner. scrummat2025
yosuke_nagai
0
170
実装で解き明かす並行処理の歴史
zozotech
PRO
1
140
GA technologiesでのAI-Readyの取り組み@DataOps Night
yuto16
0
250
Featured
See All Featured
Building an army of robots
kneath
306
46k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Code Review Best Practice
trishagee
72
19k
Navigating Team Friction
lara
189
15k
Writing Fast Ruby
sferik
629
62k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
950
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Optimizing for Happiness
mojombo
379
70k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Transcript
ElasticSearch Srinivas Singanamalla
2 ElasticSearch Search Analytics Schema-less JSON Engine Java based Lucene
Opensource* Near Real Time Distributed Scalable
3 Google Trends
4
5 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User No
intent of gender discrimination
6 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User
7
8 Faceboook Post
9 Full Text Search • Query – message: “color pink”
• Results – “Why do girls have to like color pink ?” – “Pink and blue arrived as color for babies in the mid-19th century” – “I love to color blue” – “This blue color is amazing”
10 Phrase Search • Query – message: “blue color” •
Results – “This blue color is amazing”
11 Highlighting Search • Query – message: “elasticsearch” • Results
12 Social Likeability: The number of likes you get in
your social media content.
13 Numeric Search • Query – likes: 50 • Results
– None
14 Numeric Range Search • Query – likes > 50
• Results – “Let us get together and drain that swamp tomorrow” – “How could the polls be so wrong?”
15 Call me? 312 4?9 2868
16 Fuzzy Search • Query – message: “312492868” • Results
– “It is not good to share phone numbers, but here it is: 6312492868” – “Utility Bill number: 3124928685” – “Bel me 3124892868” 312 4?9 2868
17
18 Search Suggestions • Query – “tring out Elasticsearch” •
Results – “trying out Elasticsearch”
19 Other Searches • Search Boosting – author:douglas OR title:guide^5
• Proximity Search – “douglas guide” • Regular Expressions
20 Aggregations • Count • Sum • Average • Max/Min
• Median • Standard Deviation • Percentile
21 Search Query: REST API
22
23 Aggregation: Sum
24 Aggregation: Average
25 DEMO
26 Search and Aggregations Ingestion Inverted Index Doc Values Search
Aggregation
27 Inverted Index
28 Inverted Index Table Term Document Id Frequency i 1
1 love 1 1 to 1 1 color 1, 2 2 blue 1, 2 2 sky 2 1 amazing 2 1
29 Inverted Index: Numeric Search • Find documents where –
423 < clicks < 642
30 Aggregations: Sum Get me sum of all likes
31 Doc Values (Column Oriented) Doc Id Value 1 10
2 5 3 120 Likes Likes: [10, 5, 120] Getting all the likes is super fast Sum: 10 + 5 + 120 = 135
32 Filtered Sum Get me sum of all likes containing
“elasticsearch”
33 Filtered Sum • “Likes” field values: [10, 5, 120]
• query_bits: [0, 1, 1] • Apply_query: [0, 5, 120] • Calculate Sum 0 + 5 + 120 = 125
34 How can we use ES? API Server RDBMS ElasticSearch
35 How can we use ES?
36 Finally Ask not what ElasticSearch can do for you
-- ask what you can do with ElasticSearch.
37 • Icons are taken from http://www.freepik.com/