Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ElasticSearch Overview
Search
ssinganamalla
July 03, 2017
Technology
0
54
ElasticSearch Overview
ssinganamalla
July 03, 2017
Tweet
Share
More Decks by ssinganamalla
See All by ssinganamalla
Graphite Overview
ssinganamalla
0
27
NoSql Data DBs
ssinganamalla
1
32
NoSqlDataTypes.pdf
ssinganamalla
0
28
Other Decks in Technology
See All in Technology
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
2
200
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
140
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
120
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
230
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.4k
Context Engineeringの取り組み
nutslove
0
350
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
250
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
470
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
140
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
380
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
150
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
66
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
140
We Have a Design System, Now What?
morganepeng
54
8k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
310
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Transcript
ElasticSearch Srinivas Singanamalla
2 ElasticSearch Search Analytics Schema-less JSON Engine Java based Lucene
Opensource* Near Real Time Distributed Scalable
3 Google Trends
4
5 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User No
intent of gender discrimination
6 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User
7
8 Faceboook Post
9 Full Text Search • Query – message: “color pink”
• Results – “Why do girls have to like color pink ?” – “Pink and blue arrived as color for babies in the mid-19th century” – “I love to color blue” – “This blue color is amazing”
10 Phrase Search • Query – message: “blue color” •
Results – “This blue color is amazing”
11 Highlighting Search • Query – message: “elasticsearch” • Results
12 Social Likeability: The number of likes you get in
your social media content.
13 Numeric Search • Query – likes: 50 • Results
– None
14 Numeric Range Search • Query – likes > 50
• Results – “Let us get together and drain that swamp tomorrow” – “How could the polls be so wrong?”
15 Call me? 312 4?9 2868
16 Fuzzy Search • Query – message: “312492868” • Results
– “It is not good to share phone numbers, but here it is: 6312492868” – “Utility Bill number: 3124928685” – “Bel me 3124892868” 312 4?9 2868
17
18 Search Suggestions • Query – “tring out Elasticsearch” •
Results – “trying out Elasticsearch”
19 Other Searches • Search Boosting – author:douglas OR title:guide^5
• Proximity Search – “douglas guide” • Regular Expressions
20 Aggregations • Count • Sum • Average • Max/Min
• Median • Standard Deviation • Percentile
21 Search Query: REST API
22
23 Aggregation: Sum
24 Aggregation: Average
25 DEMO
26 Search and Aggregations Ingestion Inverted Index Doc Values Search
Aggregation
27 Inverted Index
28 Inverted Index Table Term Document Id Frequency i 1
1 love 1 1 to 1 1 color 1, 2 2 blue 1, 2 2 sky 2 1 amazing 2 1
29 Inverted Index: Numeric Search • Find documents where –
423 < clicks < 642
30 Aggregations: Sum Get me sum of all likes
31 Doc Values (Column Oriented) Doc Id Value 1 10
2 5 3 120 Likes Likes: [10, 5, 120] Getting all the likes is super fast Sum: 10 + 5 + 120 = 135
32 Filtered Sum Get me sum of all likes containing
“elasticsearch”
33 Filtered Sum • “Likes” field values: [10, 5, 120]
• query_bits: [0, 1, 1] • Apply_query: [0, 5, 120] • Calculate Sum 0 + 5 + 120 = 125
34 How can we use ES? API Server RDBMS ElasticSearch
35 How can we use ES?
36 Finally Ask not what ElasticSearch can do for you
-- ask what you can do with ElasticSearch.
37 • Icons are taken from http://www.freepik.com/