Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ElasticSearch Overview
Search
ssinganamalla
July 03, 2017
Technology
0
54
ElasticSearch Overview
ssinganamalla
July 03, 2017
Tweet
Share
More Decks by ssinganamalla
See All by ssinganamalla
Graphite Overview
ssinganamalla
0
27
NoSql Data DBs
ssinganamalla
1
32
NoSqlDataTypes.pdf
ssinganamalla
0
28
Other Decks in Technology
See All in Technology
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
Tebiki Engineering Team Deck
tebiki
0
24k
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
350
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
190
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
360
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
290
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
230
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
570
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
210
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
560
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
190
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.5k
Featured
See All Featured
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
210
Skip the Path - Find Your Career Trail
mkilby
0
56
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
GraphQLとの向き合い方2022年版
quramy
50
14k
Marketing to machines
jonoalderson
1
4.6k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
66
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
The Cult of Friendly URLs
andyhume
79
6.8k
Transcript
ElasticSearch Srinivas Singanamalla
2 ElasticSearch Search Analytics Schema-less JSON Engine Java based Lucene
Opensource* Near Real Time Distributed Scalable
3 Google Trends
4
5 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User No
intent of gender discrimination
6 Jim Elasticsearchovsky Faceboook Inc. Alice Faceboookuserger Faceboook User
7
8 Faceboook Post
9 Full Text Search • Query – message: “color pink”
• Results – “Why do girls have to like color pink ?” – “Pink and blue arrived as color for babies in the mid-19th century” – “I love to color blue” – “This blue color is amazing”
10 Phrase Search • Query – message: “blue color” •
Results – “This blue color is amazing”
11 Highlighting Search • Query – message: “elasticsearch” • Results
12 Social Likeability: The number of likes you get in
your social media content.
13 Numeric Search • Query – likes: 50 • Results
– None
14 Numeric Range Search • Query – likes > 50
• Results – “Let us get together and drain that swamp tomorrow” – “How could the polls be so wrong?”
15 Call me? 312 4?9 2868
16 Fuzzy Search • Query – message: “312492868” • Results
– “It is not good to share phone numbers, but here it is: 6312492868” – “Utility Bill number: 3124928685” – “Bel me 3124892868” 312 4?9 2868
17
18 Search Suggestions • Query – “tring out Elasticsearch” •
Results – “trying out Elasticsearch”
19 Other Searches • Search Boosting – author:douglas OR title:guide^5
• Proximity Search – “douglas guide” • Regular Expressions
20 Aggregations • Count • Sum • Average • Max/Min
• Median • Standard Deviation • Percentile
21 Search Query: REST API
22
23 Aggregation: Sum
24 Aggregation: Average
25 DEMO
26 Search and Aggregations Ingestion Inverted Index Doc Values Search
Aggregation
27 Inverted Index
28 Inverted Index Table Term Document Id Frequency i 1
1 love 1 1 to 1 1 color 1, 2 2 blue 1, 2 2 sky 2 1 amazing 2 1
29 Inverted Index: Numeric Search • Find documents where –
423 < clicks < 642
30 Aggregations: Sum Get me sum of all likes
31 Doc Values (Column Oriented) Doc Id Value 1 10
2 5 3 120 Likes Likes: [10, 5, 120] Getting all the likes is super fast Sum: 10 + 5 + 120 = 135
32 Filtered Sum Get me sum of all likes containing
“elasticsearch”
33 Filtered Sum • “Likes” field values: [10, 5, 120]
• query_bits: [0, 1, 1] • Apply_query: [0, 5, 120] • Calculate Sum 0 + 5 + 120 = 125
34 How can we use ES? API Server RDBMS ElasticSearch
35 How can we use ES?
36 Finally Ask not what ElasticSearch can do for you
-- ask what you can do with ElasticSearch.
37 • Icons are taken from http://www.freepik.com/