Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mac1台でアプリを作る時代再び
Search
taminif
November 09, 2017
Programming
0
440
Mac1台でアプリを作る時代再び
Osaka Mix Leap Study #1 - Android / iOSで発表した資料です。
taminif
November 09, 2017
Tweet
Share
More Decks by taminif
See All by taminif
React Native New Architecture 移行実践報告
taminif
1
170
「とりあえずAI」が招く悲劇〜私がAIで生産性を下げるまでの話〜 / The tragedy caused by "AI for now" - The story of how I used AI to reduce my productivity
taminif
1
260
PuppeteerとPlaywrightの15日間の演劇 / relation of Puppeteer and Playwright
taminif
3
2.3k
Redashの開発はじめました / How to get started Redash development
taminif
0
780
私の生活を変えたHeadless Chrome / Headless Chrome who changed my life
taminif
3
520
WebSocketをiOSに持ち込んで辛い思いをした経験がありますか!? / have you painful experience in web socket?
taminif
3
6k
LINEで馬券を購入する / Purchase a betting ticket at LINE
taminif
1
1.6k
SkyWayで一年間運用してきたけどWebRTCってつらいんじゃないの
taminif
2
1k
オンライン英会話とSkyWay
taminif
0
530
Other Decks in Programming
See All in Programming
gunshi
kazupon
1
140
Basic Architectures
denyspoltorak
0
160
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
180
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
15
3.8k
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
160
これならできる!個人開発のすゝめ
tinykitten
PRO
0
140
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
11
4.9k
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
180
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
140
[AI Engineering Summit Tokyo 2025] LLMは計画業務のゲームチェンジャーか? 最適化業務における活⽤の可能性と限界
terryu16
2
220
Graviton と Nitro と私
maroon1st
0
160
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
180
Featured
See All Featured
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
690
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
590
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Code Review Best Practice
trishagee
74
19k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Context Engineering - Making Every Token Count
addyosmani
9
590
ラッコキーワード サービス紹介資料
rakko
0
1.9M
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Embracing the Ebb and Flow
colly
88
4.9k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Transcript
Mac1Ͱ ΞϓϦΛ࡞Δ࣌࠶ͼ Osaka Mix Leap Study #1 - Android /
iOS 2017/11/09 େౡ ޫو@sbntaminif
ࣗݾհ • ΣϒϦΦגࣜձࣾWEBΤϯδχΞ + ϓϩμΫτ Ϛωʔδϟʔ • ฏWEBΞϓϦɺٳiOSΞϓϦΛͬͯ·͢ • WebRTC
Meetup Osakaओ࠵ • ීஈژͰಇ͍͍ͯ·͢
http://ejje.weblio.jp/content/ios
iOSDC 2017Ͱొஃ͖ͯ͠·ͨ͠ ຊ༰ͪΐͬͱඃͬͯ·͢ https://speakerdeck.com/taminif/ ying-hui-hua-sabisufalsetamenikai- fa-sitabideotiyatutoapurifalseji-shu
λΠτϧʹʮ࣌ʯͱ͋ΔͷͰ ·ͣྺ࢙
ΞϓϦ։ൃͷྺ࢙ ʢݸਓͷओ؍Ͱ͢ʣ • γϯϓϧͳҰػೳΞϓϦ • ίϯγϡʔϚʔҠ২ͷΑ͏ͳങ͍ΓܕΞϓϦ • αʔόʔͱͷ࿈ܞΛඞཁͱ͍ͯ͠ΔΞϓϦ ϝϞి γϯϓϧͳήʔϜ
ιγϟή ϘʔυήʔϜͷରઓܕ Ϋϥυܥ
ࠓͱʹ͔͘αʔόʔͱͷ ࿈ܞ͕ඞཁ ͦͷͨΊʹαʔόʔΛ ༻ҙ͢Δඞཁ͕͋Δ
αʔόʔ͕͍Δʂ
αʔόʔΛ༻ҙ͢Δͷ ΞϓϦ։ൃऀʹͱَͬͯ
ͦ͜ͰɺαʔόʔϨε
ͦ͜ͰɺFirebase • FirebaseGoogle͕ఏڙ͢ΔmBaaS • iOS, Android, ΣϒͰ༻Մೳ • ։ൃΛॿ͚Δଟ͘ͷػೳ͕͋Γ·͢ɻ
ͦ͜ͰɺFirebase • ࣗͰαʔόʔΛ༻ҙ͢ΔΑΓ҆Ձ • Ұఆͷ௨৴·ͰແྉͰ͑Δ • Google͕ӡӦ͢Δ͚ͩ͋ͬͯ΄ͱΜͲམ ͪͳ͍ • ೖΕΔ͚ͩͰଟ͘ͷػೳΛΧόʔ͢Δ
ଟ͘ͷΞϓϦ։ൃऀ͕ ͍ͯ͠Δʂʂ
FirebaseΛΞϓϦʹ ΈࠐΜͰΈΑ͏
͜͜ͰɺνϟοτΞϓϦ Λྫʹߟ͑ͯΈ·͢
ͦͷલʹɾɾɾ FirebaseΛΞϓϦʹΈࠐ Ή͜ͱͰԿ͕࣮ݱͰ͖Δ͔
͜͏ͳΔ • Կ͠ͳͯ͘Analytics͕Έࠐ·ΕΔ • CrashϩάΛݟΔ͜ͱ͕Ͱ͖Δ • ϓογϡ௨ΛૹΔ͜ͱ͕Ͱ͖Δ • NEW! A/BςετΛߦ͏͜ͱ͕Ͱ͖Δ
શͯΛΓ͍ͨํ ԼهURL https://firebase.google.com/products/?hl=ja
νϟοτΞϓϦʹ Realtime Database • ΫϥυͰϗεςΟϯά͞ΕΔDB • JSONͰอଘ͞ΕɺπϦʔߏͰߏங • શͯͷΫϥΠΞϯτͰಉظ͞ΕΔ •
ΦϑϥΠϯ/ΦϯϥΠϯͷΓସ͑ରԠ
Realtime DatabaseΛͬ ͯνϟοτΛ࣮
Realtime DatabaseͷΈ 'JSFCBTFαʔό ᶄ3FBMUJNF%BUBCBTFʹ ॻ͖ࠐΈ ᶅॻ͖ࠐ·Εͨ༰Λ ௨ ᶃࢦఆͨ͠ύεΛ ࢹ͢ΔΑ͏ઃఆ
νϟοτͷ࣮ݱ ,FZ7BMVFͰΛอଘ औಘ͢Δࡍ+40/ܗ ࣜͰऔಘͰ͖Δ ҰͭͷϊʔυͰҰͭͷνϟοτΛ ࣮ݱ͍ͯ͠Δ ࣌ܥྻॱʹฒΔ͜ͱͰνϟοτͬΆ͘ දࣔ
Realtime Database let withBlock = { (snapshot: FIRDataSnapshot) in //
received chat data if let dictionary = snapshot.value as? [String : AnyObject] { guard let isRoleProf = dictionary["is_role_prof"] as? Bool, let timeMsec = dictionary["time_msec"] as? UInt64, let senderIdString = dictionary["sender_id"] as? String, let senderId = Int(senderIdString), let text = dictionary["text"] as? String else { return } let time:Double = Double(timeMsec) / 1000 } var data:ChatDataStruct if isRoleProf { // prof data = ChatDataStruct(messageSender: .YOU, message: text, displayTime: self.displayTimeFormatter.string(from: Date(timeIntervalSince1970: time))) } else { // member data = ChatDataStruct(messageSender: .ME, message: text, displayTime: self.displayTimeFormatter.string(from: Date(timeIntervalSince1970: time))) } self.chatTableReload(data: data) } firebaseChatObserveHandle = firebaseUserReference.child(`Firebaseͷύε `).observe(.childAdded, with: withBlock) ՃࣜͰ0CTFSWFS ηοτ 'JSFCBTF͔Βϊʔ υΛड͚औͬͨ࣌ ͷॲཧΛఆٛ
ͪΐͬͱઢ
νϟοτػೳWebRTCΛ ࣮ͬͯݱͰ͖·͢ WebRTCͱɾɾɾ • W3C͕ఏএ͢ΔP2PϦΞϧλΠϜίϛϡχέʔ γϣϯΛ࣮ݱ͢Δٕज़ • ϓϥάΠϯͳ͠ͰϒϥβؒͷΓͱΓ͕Մೳ • ςΩετόΠφϦͳͲͷσʔλܗࣜө૾
ԻͳͲͷStreamܗࣜͷΓͱΓ͕Մೳ
WebRTCͷΈ ᶅ௨৴ʂ 456/563/ ʢதܧʣαʔό γάφϦϯά αʔό ᶃ ᶄ ᶄ ᶃ
ͪ͜ΒɺαʔυύʔςΟ͕ ͋ΔͷͰແྉͰ࣮Ͱ͖·͢
͡Ό͋ɺͲͬͪΛ͑ ྑ͍ͷʁ
3ͭͷ؍Ͱબ͢Δͷ͕ྑ͍ • MVP • νϟοτҎ֎ͷՃՁ • ͍ͣΕαʔϏε֦େͨ͠߹ͷ ίετύϑΥʔϚϯε
MVP • Minimum Viable Product • ϦʔϯελʔτΞοϓΛ࣮ߦ͢Δͨ Ίͷखஈ • ελʔτΞοϓʹ͔ܽͤͳ͍ߟ͑ํ
• ࣗʹͱͬͯ࠷খݶͷίετͰʂ
νϟοτҎ֎ͷՃՁ • Firebaseઆ໌ͨ͠௨Γ • WebRTCͩͱϏσΦνϟοτ࣮ Ͱ͖Δ • ଞʹ͚͍ͭͨػೳͰߟ͑Δʂ
αʔϏε֦େ࣌ • ͲͪΒ༻ྔ͕૿͑Δͱ͓͕͔ۚ ͔Δ • ༻ਓμϯϩʔυྔͳͲ • Ͳ͜·Ͱ͓͕͔͔͑ۚΔ͔Λܭ ࢉ͠Α͏ʂ
·ͱΊ
·ͱΊ • Firebaseྑ͍Αʂ • ͱʹ͔͘Կ͔࡞Ζ͏ʂ • WebRTCྑ͍Αʂ • େࡕͰMeetup։࠵ͯ͠Δ͔ΒདྷͯͶʂ
ྑ͍αʔϏεͰɺྑ͍ਓੜΛ
͋Γ͕ͱ͏͍͟͝·ͨ͠