Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最先端NLP2020: Dice Loss for Data-imbalanced NLP ...
Search
tatHi
September 25, 2020
Research
0
1.9k
最先端NLP2020: Dice Loss for Data-imbalanced NLP Tasks
Japanese presentation introducing "Dice Loss for Data-imbalanced NLP Tasks".
tatHi
September 25, 2020
Tweet
Share
More Decks by tatHi
See All by tatHi
SNLP2023: From Characters to Words: Hierarchical Pre-trained Language Model for Open-vocabulary Language Understanding
tathi
0
440
最長一致法のためのサブワード正則化手法(MaxMatch-Dropout)とその周辺の話
tathi
1
670
最先端NLP2022: Rare Tokens Degenerate All Tokens: Improving Neural Text Generation via Adaptive Gradient Gating for Rare Token Embeddings
tathi
1
650
テキストベクトルの重み付けを用いたタスクに対する単語分割の最適化
tathi
1
920
要点を聞いてもらえるプレゼンを作ろう
tathi
14
6.6k
Task-Oriented Word Segmentation (Presentation for Doctoral Dissertation)
tathi
3
620
論文紹介: Fast WordPiece Tokenization
tathi
0
560
最先端NLP2021: How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models
tathi
0
670
文系的な興味を理系的な達成目標に変換する
tathi
7
4.7k
Other Decks in Research
See All in Research
能動適応的実験計画
masakat0
2
810
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
590
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
0
170
Submeter-level land cover mapping of Japan
satai
3
300
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
0
350
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
310
20250725-bet-ai-day
cipepser
2
420
数理最適化と機械学習の融合
mickey_kubo
16
9.3k
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
500
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3.1k
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
1
220
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
150
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
184
22k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Documentation Writing (for coders)
carmenintech
74
5k
Statistics for Hackers
jakevdp
799
220k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Large-scale JavaScript Application Architecture
addyosmani
513
110k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Producing Creativity
orderedlist
PRO
347
40k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Optimizing for Happiness
mojombo
379
70k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Transcript
Dice Loss for Data-imbalanced NLP Tasks Xiaoya Li, Xiaofei Sun,
Yuxian Meng, Junjun Liang, Fei Wu, Jiwei Li (ACL2020) Presenter: 平岡達也(東⼯⼤岡崎研D2) 2020/9/21 最先端NLP2020 1
まとめると • 問題: • (1) NLPタスクにおけるラベルの偏りがもたらす性能低下 • (2) easy-exampleに偏った学習を⾏うことによる性能低下 •
→これらは⼀般的に使⽤されるCross Entropy Lossでは考慮できない • 解決⽅策: • (1) Dice係数に基づくロス(Dice Loss)を導⼊し, ラベルの偏りを考慮した学習を⾏う. • (2) Focal Lossを応⽤することで, easy-exampleに学習が偏らない損失関数へとDice Lossを拡張 • 結果: • 複数のタスクで性能向上に寄与 • POS, NER, Reading comprehension, Paraphrase identification 2020/9/21 最先端NLP2020 2
NLPタスクにおける偏ったラベル⽐ • POS • ほとんどがNOUN • NER • ほとんどがOタグ •
Sentiment • ほとんどがpositive 2020/9/21 最先端NLP2020 3
偏ったラベル⽐が引き起こす⼆つの問題 1. 学習と評価の乖離 • 学習時は各サンプルをCross Entropy Lossで学習するため,サンプル 数の多いラベルに予測が傾く. • 評価ではF1値を⽤いるため,偏った予測に対するペナルティがある.
2. Easy negative exampleを重点的に学習 • 特定のラベルに偏ったデータではeasy-exampleが多くなる • 偏ったラベルの中の特に簡単なサンプルを重点的に学習してしまう 2020/9/21 最先端NLP2020 4
偏ったラベル⽐が引き起こす⼆つの問題 1. 学習と評価の乖離 • 学習時は各サンプルをCross Entropy Lossで学習するため,サンプル 数の多いラベルに予測が傾く. • 評価ではF1値を⽤いるため,偏った予測に対するペナルティがある.
• →(1) F1 scoreに関係する損失(Dice loss)で学習する 2. Easy negative exampleを重点的に学習 • 特定のラベルに偏ったデータではeasy-exampleが多くなる • 偏ったラベルの中の特に簡単なサンプルを重点的に学習してしまう • →(2) ⾃信を持って正解できる事例の損失に重みをつける (Focal lossに由来) 2020/9/21 最先端NLP2020 5
(1) Dice Loss [1/3] • ⽬的:学習損失と評価に⽤いるF1 scoreのギャップを埋める • ⽅法:F1 scoreに基づいた損失を設計
• Dice Similarity Coefficient (DSC) • ※⼆値分類の場合 A: モデルが正と予測した 事例の集合 B: 実際の正例の集合 と考えると 2020/9/21 最先端NLP2020 6
(1) Dice Loss [2/3] • ⽬的:学習損失と評価に⽤いるF1 scoreのギャップを埋める • ⽅法:F1 scoreに基づいた損失を設計
• Dice Similarity Coefficient (DSC) • ※⼆値分類の場合 A: モデルが正と予測した 事例の集合 B: 実際の正例の集合 と考えると A B AとBが完全に重なるときに (, )が最⼤ →負例に偏った予測をしていると ペナルティがある 2020/9/21 最先端NLP2020 7
(1) Dice Loss [3/3] • ⽬的:学習損失と評価に⽤いるF1 scoreのギャップを埋める • ⽅法:F1 scoreに基づいた損失を設計
• Dice Loss (DL) 事例! が正例ラベル1である予測確率 事例! が正例である時に1,その他で0 ⼀つの事例! についてのDSC データ全体でのDice Loss (! )をデータ全体で計算. !" # , !" # は学習が早くなるテクニック 2020/9/21 最先端NLP2020 8
(2) Self-adjusting Dice Loss [1/2] • 問題:easy-exampleに学習が偏る • 現象: •
⼆値分類の場合,正負のラベルを予測するためにはラベルの予測確率 が0.5より少しでも⼤きいか・⼩さければ良い. • Easy-example(例えばeasy-negative)が多い場合,予測確率が0に なるようにどんどん学習されてしまう • 例えば正例確率が0.1で⼗分に分類できているにもかかわらず,0.0に確率を近 づけるような損失が働く • →0.5付近の予測が0側に引っ張られてしまい,識別が難しくなる • (hard-negative, positiveの分類が難しくなる) • Easy-exampleはラベルが⼤きく偏っている場合に発⽣する 2020/9/21 最先端NLP2020 9
(2) Self-adjusting Dice Loss [2/2] • ⽬的:easy-exampleに学習が偏ることを防ぐ • ⽅法:モデルの予測確率でロスに重みをつけ, ⾃信を持って予測できる事例の損失を下げる
• 正例に対して,最低限の !" = 0.5を予測できるようする 2020/9/21 最先端NLP2020 10 DL DSC
Experiments (POS) • 中国語のPOSタグ付データセット • 他にもNER・読解・分類タスクで性能向上を確認 2020/9/25 最先端NLP2020 11
vs. Data augmentation • Paraphrase identification dataset QQP (⼆値分類) •
データ拡張・縮⼩を⾏ったデータセットで実験 • ラベルが均等になるようなデータ拡張を⾏わなくとも, DSCだけでそこそこの性能向上が得られる 訓練事例数 363,871 458,477 458,477 269,165 458,477(?) pos/neg⽐ 37% 63% 50% 50% 21% 79% 50% 50% 50% 50% 2020/9/21 最先端NLP2020 12
まとめ • ラベルが偏ったデータを学習するためにDiceLossを提案 • 評価で使⽤されるF1 scoreと同様の⽬的関数によりギャップを無くす • Focal Lossを応⽤し,easy-exampleの影響を減らす •
POSタグ付,NERなどの多値分類タスクで性能向上 • Data Augmentationせずとも,ラベルの偏りの影響を軽減した 学習が可能 • Generationタスクに応⽤できるか? • ラベル数(語彙)が⼤きすぎて難しい? 2020/9/21 最先端NLP2020 13