Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLOps using Vertex AI : Beyond Model Training
Search
Shadab Hussain
October 15, 2022
Technology
0
22
MLOps using Vertex AI : Beyond Model Training
MLOps using Vertex AI: Beyond Model Training (GDG Mysore Devfest'22)
Shadab Hussain
October 15, 2022
Tweet
Share
More Decks by Shadab Hussain
See All by Shadab Hussain
Intro to Qiskit
techwithshadab
0
85
Explainable AI- A New Paradigm for Transparency in AI
techwithshadab
0
74
Experimentation with Jupyter, Papermill, and MLFlow
techwithshadab
0
250
Deep Learning in Neural Networks
techwithshadab
0
63
Data Science- An Exploratory Career
techwithshadab
0
140
Introduction to Qiskit
techwithshadab
0
120
Python for Data Science
techwithshadab
0
160
Tweet-Driven Mozfest-Storytelling
techwithshadab
2
46
Other Decks in Technology
See All in Technology
GCASアップデート(202508-202510)
techniczna
0
240
Databricks Free Edition で始めるMLflow
taka_aki
0
700
AWSが好きすぎて、41歳でエンジニアになり、AAIを経由してAWSパートナー企業に入った話
yama3133
2
220
組織全員で向き合うAI Readyなデータ利活用
gappy50
5
2k
Open Table Format (OTF) が必要になった背景とその機能 (2025.10.28)
simosako
3
600
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
220
어떤 개발자가 되고 싶은가?
arawn
1
390
東京大学「Agile-X」のFPGA AIデザインハッカソンを制したソニーのAI最適化
sony
0
180
マルチエージェントのチームビルディング_2025-10-25
shinoyamada
0
240
ざっくり学ぶ 『エンジニアリングリーダー 技術組織を育てるリーダーシップと セルフマネジメント』 / 50 minute Engineering Leader
iwashi86
8
4.2k
仕様駆動開発を実現する上流工程におけるAIエージェント活用
sergicalsix
10
5.3k
今から間に合う re:Invent 準備グッズと現地の地図、その他ラスベガスを周る際の Tips/reinvent-preparation-guide
emiki
1
230
Featured
See All Featured
Statistics for Hackers
jakevdp
799
220k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Fireside Chat
paigeccino
41
3.7k
Building an army of robots
kneath
306
46k
How to train your dragon (web standard)
notwaldorf
97
6.3k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
900
The Invisible Side of Design
smashingmag
302
51k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
How to Think Like a Performance Engineer
csswizardry
27
2.2k
Transcript
Mysuru MLOps using Vertex AI: Beyond Model Training Shadab Hussain
Senior Associate - MLOps, TheMathCompany
What is Machine Learning?
What is Machine Learning? 1. An application of artificial intelligence
2. Built using algorithms and data 3. Automatically analyze and make decision by itself without human intervention.
None
None
A classification problem is when the output variable is a
category. Examples: “red” or “blue”? will it rain today or not? “cat”, “dog” or “tiger”?
A regression problem is when the output variable is a
real value. Examples: Predict value of a stock? Price of house in a city?
Problems with Traditional way for building ML Models • Good
configuration hardware required. • Model needs to be deployed in a scalable way. • Machine Learning expertise required to write code • Build efficient models.
None
How to tackle all this??
Vertex AI • Train models without code, minimal expertise required
• A unified UI for the entire ML workflow • Manage your models with confidence • Pre-trained APIs for vision, video, natural language, and more
Vertex AI • Image Classification Object Detection • Tabular Regression/classification
Forecasting
Vertex AI • Text Classification Entity Extraction Sentiment analysis •
Video Classification Action Recognition
How does Vertex AI Tables help? • It helps you
build and deploy high quality machine learning models on structured data (Tables). • No code required!! • No Machine Learning Expertise required!!
Example problem Statement 1. Predicting Housing Prices 2. Predicting possibility
of getting Diabetes 3. Credit card data for 'good' or 'bad' customer 4. Mobile Phone Price range from it’s Features (RAM, Battery, etc)
https://github.com/techwithshad ab/vertex-ai-wine-demo
None