Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLOps using Vertex AI : Beyond Model Training
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Shadab Hussain
October 15, 2022
Technology
0
24
MLOps using Vertex AI : Beyond Model Training
MLOps using Vertex AI: Beyond Model Training (GDG Mysore Devfest'22)
Shadab Hussain
October 15, 2022
Tweet
Share
More Decks by Shadab Hussain
See All by Shadab Hussain
Intro to Qiskit
techwithshadab
0
90
Explainable AI- A New Paradigm for Transparency in AI
techwithshadab
0
75
Experimentation with Jupyter, Papermill, and MLFlow
techwithshadab
0
250
Deep Learning in Neural Networks
techwithshadab
0
66
Data Science- An Exploratory Career
techwithshadab
0
140
Introduction to Qiskit
techwithshadab
0
130
Python for Data Science
techwithshadab
0
160
Tweet-Driven Mozfest-Storytelling
techwithshadab
2
49
Other Decks in Technology
See All in Technology
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
940
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
5
5.7k
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
240
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
160
Red Hat OpenStack Services on OpenShift
tamemiya
0
110
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.4k
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
670
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
240
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.9k
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
140
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
200
Featured
See All Featured
Building an army of robots
kneath
306
46k
エンジニアに許された特別な時間の終わり
watany
106
230k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
A Tale of Four Properties
chriscoyier
162
24k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
180
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
370
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
53
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Crafting Experiences
bethany
1
49
ラッコキーワード サービス紹介資料
rakko
1
2.3M
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
440
Transcript
Mysuru MLOps using Vertex AI: Beyond Model Training Shadab Hussain
Senior Associate - MLOps, TheMathCompany
What is Machine Learning?
What is Machine Learning? 1. An application of artificial intelligence
2. Built using algorithms and data 3. Automatically analyze and make decision by itself without human intervention.
None
None
A classification problem is when the output variable is a
category. Examples: “red” or “blue”? will it rain today or not? “cat”, “dog” or “tiger”?
A regression problem is when the output variable is a
real value. Examples: Predict value of a stock? Price of house in a city?
Problems with Traditional way for building ML Models • Good
configuration hardware required. • Model needs to be deployed in a scalable way. • Machine Learning expertise required to write code • Build efficient models.
None
How to tackle all this??
Vertex AI • Train models without code, minimal expertise required
• A unified UI for the entire ML workflow • Manage your models with confidence • Pre-trained APIs for vision, video, natural language, and more
Vertex AI • Image Classification Object Detection • Tabular Regression/classification
Forecasting
Vertex AI • Text Classification Entity Extraction Sentiment analysis •
Video Classification Action Recognition
How does Vertex AI Tables help? • It helps you
build and deploy high quality machine learning models on structured data (Tables). • No code required!! • No Machine Learning Expertise required!!
Example problem Statement 1. Predicting Housing Prices 2. Predicting possibility
of getting Diabetes 3. Credit card data for 'good' or 'bad' customer 4. Mobile Phone Price range from it’s Features (RAM, Battery, etc)
https://github.com/techwithshad ab/vertex-ai-wine-demo
None