Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLOps using Vertex AI : Beyond Model Training
Search
Shadab Hussain
October 15, 2022
Technology
0
24
MLOps using Vertex AI : Beyond Model Training
MLOps using Vertex AI: Beyond Model Training (GDG Mysore Devfest'22)
Shadab Hussain
October 15, 2022
Tweet
Share
More Decks by Shadab Hussain
See All by Shadab Hussain
Intro to Qiskit
techwithshadab
0
90
Explainable AI- A New Paradigm for Transparency in AI
techwithshadab
0
75
Experimentation with Jupyter, Papermill, and MLFlow
techwithshadab
0
250
Deep Learning in Neural Networks
techwithshadab
0
66
Data Science- An Exploratory Career
techwithshadab
0
140
Introduction to Qiskit
techwithshadab
0
130
Python for Data Science
techwithshadab
0
160
Tweet-Driven Mozfest-Storytelling
techwithshadab
2
49
Other Decks in Technology
See All in Technology
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
150
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
OpenShiftでllm-dを動かそう!
jpishikawa
0
110
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
460
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
460
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
360
配列に見る bash と zsh の違い
kazzpapa3
3
160
Context Engineeringの取り組み
nutslove
0
360
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
110
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
370
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
450
Featured
See All Featured
The agentic SEO stack - context over prompts
schlessera
0
640
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
The Invisible Side of Design
smashingmag
302
51k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
How to Ace a Technical Interview
jacobian
281
24k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
320
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
190
Transcript
Mysuru MLOps using Vertex AI: Beyond Model Training Shadab Hussain
Senior Associate - MLOps, TheMathCompany
What is Machine Learning?
What is Machine Learning? 1. An application of artificial intelligence
2. Built using algorithms and data 3. Automatically analyze and make decision by itself without human intervention.
None
None
A classification problem is when the output variable is a
category. Examples: “red” or “blue”? will it rain today or not? “cat”, “dog” or “tiger”?
A regression problem is when the output variable is a
real value. Examples: Predict value of a stock? Price of house in a city?
Problems with Traditional way for building ML Models • Good
configuration hardware required. • Model needs to be deployed in a scalable way. • Machine Learning expertise required to write code • Build efficient models.
None
How to tackle all this??
Vertex AI • Train models without code, minimal expertise required
• A unified UI for the entire ML workflow • Manage your models with confidence • Pre-trained APIs for vision, video, natural language, and more
Vertex AI • Image Classification Object Detection • Tabular Regression/classification
Forecasting
Vertex AI • Text Classification Entity Extraction Sentiment analysis •
Video Classification Action Recognition
How does Vertex AI Tables help? • It helps you
build and deploy high quality machine learning models on structured data (Tables). • No code required!! • No Machine Learning Expertise required!!
Example problem Statement 1. Predicting Housing Prices 2. Predicting possibility
of getting Diabetes 3. Credit card data for 'good' or 'bad' customer 4. Mobile Phone Price range from it’s Features (RAM, Battery, etc)
https://github.com/techwithshad ab/vertex-ai-wine-demo
None