Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ungefähr Populär
Search
Tobias Kässmann
June 29, 2016
Technology
0
200
Ungefähr Populär
Trackingdaten zur Sortierung von Suchergebnissen nutzen
Tobias Kässmann
June 29, 2016
Tweet
Share
More Decks by Tobias Kässmann
See All by Tobias Kässmann
Don't just sit there - start search
tkaessmann
0
940
Gain speed and space / precision with NLP in Solr
tkaessmann
0
82
Clustering your e-commerce products (in Solr)
tkaessmann
0
1.3k
Other Decks in Technology
See All in Technology
Wasm元年
askua
0
160
Claude Code Actionを使ったコード品質改善の取り組み
potix2
PRO
6
2.5k
GeminiとNotebookLMによる金融実務の業務革新
abenben
0
240
Oracle Audit Vault and Database Firewall 20 概要
oracle4engineer
PRO
3
1.7k
LangSmith×Webhook連携で実現するプロンプトドリブンCI/CD
sergicalsix
1
120
rubygem開発で鍛える設計力
joker1007
2
220
JEDAI Databricks Free Editionもくもく会
taka_aki
1
110
論文紹介:LLMDet (CVPR2025 Highlight)
tattaka
0
110
~宇宙最速~2025年AWS Summit レポート
satodesu
1
1.9k
CursorによるPMO業務の代替 / Automating PMO Tasks with Cursor
motoyoshi_kakaku
1
500
生成AIで小説を書くためにプロンプトの制約や原則について学ぶ / prompt-engineering-for-ai-fiction
nwiizo
4
2.9k
WordPressから ヘッドレスCMSへ! Storyblokへの移行プロセス
nyata
0
210
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
246
12k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
A Tale of Four Properties
chriscoyier
160
23k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
940
YesSQL, Process and Tooling at Scale
rocio
173
14k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Transcript
Ungefähr populär Jörg Rathlev & Tobias Kässmann Trackingdaten zur Sortierung
von Suchergebnissen nutzen
None
None
< 3M 100M Zeit Produkte we are here
Sonstiges 20 % Suche 80 %
vs.
• Global • pro Portal • pro Suchanfrage • …
rock hose tv jeans 129 64 202 98 120 …
…
None
Bloomfilter Zugehörigkeit zu Mengen
0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1
„Otto“ hash1 hash2 hash3
0 1 1 1 0 1 0 0 0 1
„OGdev“ hash1 hash2 hash3
0 1 1 1 0 1 0 0 0 1
„OGdev“ hash1 hash2 hash3 Wenn alle Werte Eins sind, ist das Wort wahrscheinlich in der Menge enthalten
0 1 1 1 0 1 0 0 0 1
„Kollision“ hash1 hash2 hash3 Kollisionen bei allen Hash- Funktionen führen zu falsch positiven Antworten
0 1 1 1 0 1 0 0 0 1
„Test“ hash1 hash2 hash3 Wenn an mindestens einer Stelle eine Null steht, ist das Wort definitiv nicht enthalten
Demo
Bloom-Filter: Eigenschaften • Konstante Speichergröße • Konstante Zugriffszeit (Einfügen &
Abfrage) • Falsch positive Antworten möglich; negative Antworten sind exakt • Elemente können nicht entfernt werden
Bloom-Filter: Parameter • Anzahl Hash-Funktionen (k) • Größe des Bitsets
(m) • Wahrscheinlichkeit falsch positiver Antworten: 1 − 1 − 1 m kn k
Guava Library BloomFilter<Thing> filter = BloomFilter.create(funnel, 100, 0.01); filter.put(element); if
(filter.mightContain(element)) { … } Hash-Funktion erwartete Anzahl Elemente Falsch-Positiv-Rate
Bloom-Filter: Anwendungsfälle • Langsame Zugriffe auf nicht existierende Elemente vermeiden
• Elemente erst beim zweiten Zugriff in einen Cache einfügen • …
Count-Min-Sketch Zählung von Häufigkeit
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 „Otto“ hash1 hash2 hash3
0 0 2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 3 „Otto“ hash1 hash2 hash3
0 0 2 0 0 0 0 0 1 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 1 2 3 „OGdev“ hash2 hash1 hash3
0 0 3 0 0 0 0 0 1 0
0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 2 1 2 3 „Kollision“ hash1 hash2 hash3
0 0 3 0 0 0 0 0 1 0
0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 2 1 2 3 „Otto“ hash1 hash2 hash3 3 2 2
0 0 3 0 0 0 0 0 1 0
0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 2 1 2 3 „Otto“ hash1 hash2 hash3 3 2 2 min=2
0 0 3 0 0 0 0 0 1 0
0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 2 1 2 3 „OGdev“ 1 1 2 min=1 hash1 hash2 hash3
Count-Min-Sketch: Eigenschaften • Konstante Speichergröße • Konstante Zugriffszeit (Einfügen &
Abfrage) • Ausgelesener Wert ist möglicherweise zu hoch, aber nicht zu niedrig • Elemente können nicht entfernt werden
Count-Min-Sketch: Parameter • Tiefe (Anzahl Hash-Funktionen) • Breite (Anzahl Werte
pro Zeile) • Auswahl über akzeptierte Abweichung mit Konfidenz (max. ε Abweichung mit Wahrscheinlichkeit p)
None
Relevanz Zeit
Exponentielles Abstrafen
Search Technology Meetup Hamburg