Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自然言語処理と深層学習の最先端
Search
tkng
January 15, 2016
Technology
16
7.6k
自然言語処理と深層学習の最先端
第4回 JustTechTalk の発表資料
tkng
January 15, 2016
Tweet
Share
More Decks by tkng
See All by tkng
LSTMを用いた自然言語処理について
tkng
3
3.6k
EMNLP2015読み会:Effective Approaches to Attention-based Neural Machine Translation
tkng
2
3.9k
basis-of-optimization.pdf
tkng
1
1.3k
Other Decks in Technology
See All in Technology
強いチームと開発生産性
onk
PRO
34
11k
Engineer Career Talk
lycorp_recruit_jp
0
150
ドメイン名の終活について - JPAAWG 7th -
mikit
33
20k
Security-JAWS【第35回】勉強会クラウドにおけるマルウェアやコンテンツ改ざんへの対策
4su_para
0
180
SREが投資するAIOps ~ペアーズにおけるLLM for Developerへの取り組み~
takumiogawa
1
170
Taming you application's environments
salaboy
0
180
SREによる隣接領域への越境とその先の信頼性
shonansurvivors
2
520
OCI 運用監視サービス 概要
oracle4engineer
PRO
0
4.8k
初心者向けAWS Securityの勉強会mini Security-JAWSを9ヶ月ぐらい実施してきての近況
cmusudakeisuke
0
120
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
170
インフラとバックエンドとフロントエンドをくまなく調べて遅いアプリを早くした件
tubone24
1
430
OCI Vault 概要
oracle4engineer
PRO
0
9.7k
Featured
See All Featured
Building an army of robots
kneath
302
43k
Site-Speed That Sticks
csswizardry
0
23
KATA
mclloyd
29
14k
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Agile that works and the tools we love
rasmusluckow
327
21k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
Optimizing for Happiness
mojombo
376
70k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
16k
Transcript
ࣗવݴޠॲཧͱਂֶशͷ࠷ઌ ಙӬ೭ +VTU5FDI5BML
ࣗવݴޠॲཧͱਂֶशͷ࠷ઌ ͷҰ෦Λհ͠·͢ ಙӬ೭ (@tkng) +VTU5FDI5BML
ࣗݾհɿಙӬ೭ • Twitter ID: @tkng • εϚʔτχϡʔεגࣜձࣾͰࣗવݴޠॲཧ ը૾ॲཧΛͬͯ·͢
None
ࣗવݴޠॲཧͱ • ࣗવݴޠʢ≠ϓϩάϥϛϯάݴޠʣΛѻ͏ • ػց༁ • ࣭Ԡ • จॻྨ •
ߏจղੳɾΓड͚ղੳ • ܗଶૉղੳɾ୯ޠׂ
ػց༁ͷྫ • Google༁ͷword lensػೳ IUUQHPPHMFUSBOTMBUFCMPHTQPUKQIBMMPIPMBPMBUPOFXNPSFQPXFSGVM@IUNM
࣭Ԡͷྫ • IBM Watson • Jeopardy!Ͱਓؒʹউར IUUQXXXOZUJNFTDPNTDJFODFKFPQBSEZXBUTPOIUNM
ਂֶशͱ • ≒ χϡʔϥϧωοτ • ۙͷྲྀߦɺҎԼͷཧ༝ʹΑΔ • ܭࢉػͷੑೳ্ • ֶशσʔλͷ૿Ճ
• ࠷దԽख๏ͳͲͷݚڀͷਐల
ࣗવݴޠॲཧͱ ਂֶशͷ࠷ઌ
Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention (Xu+, 2015) • ը૾ʹର͢Δղઆจͷੜ IUUQLFMWJOYVHJUIVCJPQSPKFDUTDBQHFOIUNM
Show, Attend and Tell Ͳ͏͍͏ख๏͔ • ҎԼͷ3ͭͷΈ߹Θͤ • Convolutional Neural
Network • Long Short Term Memory • Attention
Generating Images from Captions with Attention (Mansimov+, 2015) • Ωϟϓγϣϯ͔Βը૾Λੜ͢Δ
• ࡉͰݟΕඈߦػʹݟ͑ͳ͘ͳ͍
Effective Approaches to Attention- based Neural Machine Translation (Bahdanau+, 2015)
• Deep LearningΛ༻͍ͯػց༁ • Local Attentionͱ͍͏৽͍͠ख๏ΛఏҊ • ͍͔ͭ͘ͷݴޠϖΞͰɺstate of the artΛୡ ࠷ߴਫ४
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing
(Kumar+, 2015) • ৽͍͠ϞσϧʢDynamic Memory Networksʣ ΛఏҊͨ͠ • Recurrent Neural NetworkΛΈ߹ΘͤͨΑ ͏ͳϞσϧʹͳ͍ͬͯΔ • ࣭Ԡɺࢺλά͚ɺڞࢀরղੳɺධ ੳͰstate of the art
ਂֶशͷNLPʹ͓͚Δݱঢ় • ਫ਼໘Ͱɺଞͷख๏ͱେ͍͍ࠩͭͯͳ͍ • ը૾ॲཧԻೝࣝͱҧ͏ • ػց༁࣭Ԡ͕γϯϓϧͳख๏Ͱղ͚ ΔΑ͏ʹͳͬͨ • จͷੜ͕Ͱ͖ΔΑ͏ʹͳͬͨ
ࠓޙͲ͏ͳΔͷ͔ʁ • ਖ਼ɺΑ͘Θ͔Βͳ͍…… • ը૾ಈըͱΈ߹Θͤͨݚڀ૿͑ͦ͏
࠷ઌʹ͍͍ͭͯͨ͘Ίʹ
3ͭʹߜͬͯղઆ͠·͢ • Neural Networkͷجૅ • Recurrent Neural Network • ಛʹGated
Recurrent Unit • Attention
χϡʔϥϧωοτϫʔΫ = ؔ • χϡʔϥϧωοτϫʔΫɺ͋ΔछͷؔͰ ͋Δͱߟ͑Δ͜ͱ͕Ͱ͖Δ • ೖग़ྗϕΫτϧ • ඍՄೳ
γϯϓϧͳྫ͔Β࢝ΊΔ y = f(x) = W x
ग़ྗΛ0ʙ1ʹਖ਼نԽ͢Δ • y = softmax(f(x))
ଟԽͯ͠ΈΑ͏ • y = softmax(g(f(x)))
Ͳ͕͜ϨΠϠʔʁ
౾ࣝ • ϨΠϠʔͱ͍͏ݴ༿ʹؾΛ͚ͭΑ͏ • ͲͬͪΛࢦͯ͠Δ͔ᐆດʢಡΉͱ͖ʹؾΛ ͚ͭΕΘ͔Δ͕…ʣ • ϝδϟʔͳOSSͰɺؔΛࢦ͢ͷ͕ଟ ʢCaffe, Torch,
Chainer, TensorFlowʣ
Recurrent Neural Network • ࣌ܥྻʹฒͿཁૉΛ1ͭͣͭड͚औͬͯɺঢ়ଶ Λߋ৽͍ͯ͘͠ωοτϫʔΫͷ૯শ • ࠷ۙͱͯྲྀߦ͍ͯ͠Δ IUUQDPMBIHJUIVCJPQPTUT6OEFSTUBOEJOH-45.T
ͳͥRNN͕ྲྀߦ͍ͯ͠Δͷ͔ʁ • ՄมͷσʔλͷऔΓѻ͍͍͠ • RNNΛͬͨseq2seqϞσϧʢEncoder/ DecoderϞσϧͱݺͿʣͰՄมσʔλΛ ͏·͘औΓѻ͑Δࣄ͕Θ͔͖ͬͯͨ
Seq2seqϞσϧͱʁ • ՄมͷೖྗσʔλΛɺݻఆͷϕΫτϧʹ Τϯίʔυͯ͠ɺ͔ͦ͜Β༁ޙͷσʔλΛ σίʔυ͢Δ • ػց༁ࣗಈཁͳͲೖग़ྗͷ͕͞ҧ͏ λεΫͰۙݚڀ͕ਐΜͰ͍Δ
Seq2seqϞσϧͰͷ༁ 5IJT JT B QFO &04 ͜Ε ϖϯ Ͱ͢
&04 ͜Ε ϖϯ Ͱ͢
Seq2seqϞσϧͰͷ༁ 5IJT JT B QFO &04 ͜Ε ϖϯ Ͱ͢
&04 ͜Ε ϖϯ Ͱ͢ 5IJTJTBQFOΛݻఆʹ Τϯίʔυ͍ͯ͠Δʂ
Seq2seqϞσϧΛ༁ʹ͏ͱʁ • ͔ͳΓ͏·͍͘͘ࣄ͕Θ͔͍ͬͯΔ • ͨͩ࣍͠ͷ༷ͳऑ͕͋Δ • จʹऑ͍ • ݻ༗໊ࢺ͕ೖΕସΘΔ •
͜ΕΛղܾ͢Δͷ͕࣍ʹઆ໌͢ΔAttention
Attentionͱ • σίʔυ࣌ʹΤϯίʔυ࣌ͷใΛগ͚ͩ͠ ࢀর͢ΔͨΊͷΈ • গ͚ͩ͠ = બͨ͠෦͚ͩΛݟΔ • Global
AttentionͱLocal Attention͕͋Δ
Global Attention • ީิঢ়ଶͷॏΈ͖ΛAttentionͱ͢Δ • ྺ࢙తʹͪ͜Βͷํ͕ͪΐͬͱݹ͍ 5IJT JT B QFO
&04 ͜Ε ͜Ε
Local Attention • Τϯίʔυ࣌ͷঢ়ଶΛ͍͔ͭ͘બͯ͠͏ 5IJT JT B QFO &04 ͜Ε
͜Ε
Attentionͷॱং • ΛͯΔॱংɺGlobal AttentionͰ Local AttentionͰ͍͠Ͱ͋Δ • AttentionͷॱংRNNͰֶशͨ͠Γ͢Δ • લ͔ΒॱʹAttentionΛ͍͚ͯͯͩ͘Ͱੑ
ೳ্͢Δ
࣮ݧ݁ՌɿWMT'14
࣮ݧ݁ՌɿWMT'15
࣮ࡍͷ༁ͷྫ
͜͜·Ͱͷ·ͱΊ • جૅతͳχϡʔϥϧωοτϫʔΫͷղઆ • Recurrent Neural Network • Attention
ࠓ͞ͳ͔ͬͨ͜ͱ • ֶशʢback propagation, minibatchʣ • ଛࣦؔʢlog loss, cross entropy
lossʣ • ਖ਼ଇԽͷςΫχοΫ • dropout, batch normalization • ࠷దԽͷςΫχοΫ • RMSProp, AdaGrad, Adam • ֤छ׆ੑԽؔ • (Very) Leaky ReLU, Maxout
ࠓޙͷΦεεϝ • ࣗͰͳʹ͔࣮ݧͯ͠ΈΑ͏ • γϯϓϧͳྫͰ͍͍͔Β·ͣಈ͔͢ • ಈ͍ͨΒ࣍ʹࣗͰվͯ͠ΈΔ • ͱʹ͔͘खΛಈ͔͢͜ͱ͕େࣄ •
࠷ॳ͔Β͗͢͠Δ͜ͱʹखΛग़͞ͳ͍
࠷৽ใͷΞϯςφ (1) • TwitterͰػցֶशͳͲʹ͍ͭͯൃݴ͍ͯ͠Δ ਓΛϑΥϩʔ͢Δ • ͱΓ͋͑ͣ @hillbig • ͍͍ਓଞʹͨ͘͞Μ͍·͕͢
• ͍͋͠ਓ͍Δ͔Βҙͯ͠Ͷ
࠷৽ใͷΞϯςφ (2) • จΛಡ͏ • ಡΉ͚ͩ࣌ؒͷແବͳจ͋ΔͷͰҙ • ࠷ॳͷ͏ͪɺ༗໊ͳֶձʢACL, EMNLP, ICML,
NIPS, KDD, etc.ʣʹ௨ͬͯΔจʹ ߜ͕ͬͨΑ͍
࠷৽ใͷΞϯςφ (3) • จͷஶऀʹ͢Δ • จΛಡΜͰ͍Δ͏ͪʹɺ͕ࣗ໘ന͍ͱ ࢥ͏จͷஶऀ͕Կਓ͔ग़ͯ͘Δ • ͦ͏͍͏ਓͷ৽͍͠จͲ͏ʹ͔ͯ͠ νΣοΫ͠Α͏
Take home messages • ؾ͕࣋ͪΓ্͕ͬͯΔ͏ͪʹɺࣗͷखͰ ৭ʑ࣮ݧͯ͠ΈΑ͏ • ॳ৺ऀʹChainer͕Φεεϝ • ࠷৽ใωοτͰೖखͰ͖Δ
• มͳํʹҙ͕ࣝߴ͍ਓʹҙ