Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LSTMを用いた自然言語処理について
Search
tkng
January 27, 2016
Technology
3
3.7k
LSTMを用いた自然言語処理について
第3回TokyoCL勉強会 でのLSTMについての発表資料です
tkng
January 27, 2016
Tweet
Share
More Decks by tkng
See All by tkng
自然言語処理と深層学習の最先端
tkng
16
7.7k
EMNLP2015読み会:Effective Approaches to Attention-based Neural Machine Translation
tkng
2
4.1k
basis-of-optimization.pdf
tkng
1
1.4k
Other Decks in Technology
See All in Technology
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
220
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
330
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
260
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
170
AI駆動開発を事業のコアに置く
tasukuonizawa
1
400
AWS DevOps Agent x ECS on Fargate検証 / AWS DevOps Agent x ECS on Fargate
kinunori
2
220
マネージャー視点で考えるプロダクトエンジニアの評価 / Evaluating Product Engineers from a Manager's Perspective
hiro_torii
0
190
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
150
22nd ACRi Webinar - 1Finity Tamura-san's slide
nao_sumikawa
0
110
生成AIと余白 〜開発スピードが向上した今、何に向き合う?〜
kakehashi
PRO
0
170
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
520
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
210
Featured
See All Featured
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
170
Ruling the World: When Life Gets Gamed
codingconduct
0
150
The Cult of Friendly URLs
andyhume
79
6.8k
Prompt Engineering for Job Search
mfonobong
0
160
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
110
My Coaching Mixtape
mlcsv
0
51
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
190
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
89
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
The untapped power of vector embeddings
frankvandijk
1
1.6k
Transcript
LSTMΛ༻͍ͨ ࣗવݴޠॲཧʹ͍ͭͯ ಙӬ೭ (@tkng) 5PLZP$-ษڧձୈճ!άʔάϧגࣜձࣾ
ࣗݾհ • Twitter: @tkng • ΧϨʔ͕͖Ͱ͢
ຊͷ • Recurrent Neural Network & LSTM • LSTMΛͬͨ࠷ۙͷݚڀࣄྫ •
LSTMΛͬͨಠ࣮ࣗݧ
Recurrent Neural Network • ࣌ܥྻʹฒͿཁૉΛ1ͭͣͭड͚औͬͯɺঢ়ଶ Λߋ৽͍ͯ͘͠ωοτϫʔΫͷ૯শ • LSTMRNNͷҰछͱݴ͑Δ IUUQDPMBIHJUIVCJPQPTUT6OEFSTUBOEJOH-45.T
Seq2seqϞσϧͱʁ • ՄมͷೖྗσʔλΛɺRecurrent Neural NetworkΛͬͯݻఆͷϕΫτϧʹΤϯίʔ υͯ͠ɺ͔ͦ͜Β༁ޙͷσʔλΛσίʔυ ͢Δ
Seq2seqϞσϧͰͷ༁ 5IJT JT B QFO &04 ͜Ε ϖϯ Ͱ͢
&04 ͜Ε ϖϯ Ͱ͢
Seq2seqϞσϧͰͷ༁ 5IJT JT B QFO &04 ͜Ε ϖϯ Ͱ͢
&04 ͜Ε ϖϯ Ͱ͢ 5IJTJTBQFOΛݻఆʹ Τϯίʔυ͍ͯ͠Δʂ
Effective Approaches to Attention- based Neural Machine Translation (Bahdanau+, 2015)
• Seq2seqͰػց༁ • Local Attentionͱ͍͏৽͍͠ख๏ΛఏҊ • ͍͔ͭ͘ͷݴޠϖΞͰɺstate of the artΛୡ
A Neural Conversational Model (Vinyals+, 2015) • LSTMΛͬͯରγεςϜΛ࡞ͬͨΒͦΕͬ Ά͘ಈ͍ͨ
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing
(Kumar+, 2015) • Dynamic Memory NetworksΛఏҊͨ͠ • Recurrent Neural NetworkΛΈ߹ΘͤͨΑ ͏ͳϞσϧʹͳ͍ͬͯΔ • ࣭Ԡɺࢺλά͚ɺڞࢀরղੳɺධ ੳͰstate of the art • ΄΅ಉ͡ϞσϧͰ৭ʑղ͚Δͷ͕͍͢͝ͱ ͍͏ओு
Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention (Xu+, 2015) • ը૾ʹର͢Δղઆจͷੜ • CNN + LSTM + Attention IUUQLFMWJOYVHJUIVCJPQSPKFDUTDBQHFOIUNM
Semi-supervised Sequence Learning (Dai+, 2015) • LSTMΛͬͯ sentiment analysis ͳͲྨܥ
ͷλεΫΛ࣮ݧ • Language ModelͱSequence Autoencoderͷ2 ͭΛpretrainingͷख๏ͱͯ͠༻͍ɺ্هͷ࣮ݧ Ͱstate of the artΛߋ৽ • γϯϓϧͳख๏Ͱɺຯʹ͍͢͝
An Empirical Exploration of Recurrent Network Architectures ( Jozefowicz+, 2015)
• GoogleͷܭࢉػύϫʔʹΛݴΘͤͯɺ LSTMGRUͷੜϞσϧΛͨ͘͞ΜධՁͨ͠ • LSTMΛॳظԽ͢Δࡍɺforget gateͷbiasΛ1 ʹ͢Δ͜ͱΛڧ͘קΊ͍ͯΔ
ͭ·ΓɺࠓɺLSTM͕φ͍ʂ • ྨλεΫͰstate of the art͕ग़ͤΔ • Seq2seqͰจੜ͕Ͱ͖Δ Ͳ͏͍͏ཧ۶ͳͷ͔Α͘Θ͔Βͳ͍…
͔͜͜Βઌಠ࣮ࣗݧͷ
ͳʹΛ࣮ݧ͔ͨ͠ʁ • LSTMʹΑΔ Sentence Auto-encoder • ࣮ݧ͍Ζ͍ΖࡶͰ͢ ͜Ε ϖϯ
Ͱ͢ &04 ͜Ε ϖϯ Ͱ͢ &04 ͜Ε ϖϯ Ͱ͢
ͳΜͰ࣮ݧ͔ͨ͠ʁ • Seq2seq͓͠Ζ͍ٕज़͕ͩɺத͕Α͘ Θ͔Βͳ͍
Γ͍ͨ͜ͱ • Ͳ͏͍͏จΛؒҧ͍͑͢ͷ͔ʁ • ͳΜͰ։͍ׅͨހΛด͡ΒΕΔͷ͔ʁ • ͳΜͰೖྗΛٯʹͨ͠ํ͕͍͍ͷ͔ʁ • ࣅͨจ͕࡞Γग़͢ঢ়ଶࣅ͍ͯΔͷ͔ʁ •
ͳΜͰݻఆͷσʔλ͔ΒՄมͷग़ྗ͕Ͱ ͖Δͷ͔ʁ
σʔλ • ݸਓతʹूΊ͍ͯͨຊޠͷϒϩάσʔλ • ܇࿅ɿ 60ສจ (33MB) • ςετɿ 3ສ5ઍจ
(2MB)
࣮ݧઃఆʢ1ʣ • ޠኮʢor จࣈʣ80000 or 10000 • ೖྗ100࣍ݩͷembeddingʹม • LSTM1ɺঢ়ଶ200࣍ݩ
• ࠷దԽʹAdamΛ༻ • ίʔυ https://github.com/odashi/ chainer_examples Λར༻ͨ͠
࣮ݧઃఆʢ2ʣ • ೖྗΛ୯ޠ୯Ґʹ͢Δ͔ɺจࣈ୯Ґʹ͢Δ͔ • ೖྗΛٯॱʹ͢Δ͔ɺͦͷ··ೖΕΔ͔ • ߹ܭ4ύλʔϯΛ࣮ݧͨ͠ • ୯ޠ୯Ґ50epoch, ޠኮ80000ޠ
• จࣈ୯Ґ100epoch, ޠኮ10000จࣈ
ͲΜͳײ͡ͰֶशͰ͖Δ͔ʁ • trg = ͠Ό͘ ͠Ό͘ ͱ φγ ͷ Α͏
ͳ ৯ ײ ʹ ্ ͳ ຯ ɻ • hyp = Χϥʔ ͱ ग़ ͷ Α͏ ͳ ࣄଶ ʹ ʹ ඇৗ ͳ ࢪઃ ɻ • hyp = ମ ͱ ࠃՈ ͷ Α͏ ͳ ৯ ײ ʹ ߦ͘ ͳ ୴ಹ ɻ • hyp = ͱ φγ ͷ Α͏ ͳ ৯ ײ ʹ ্ ͳ ୴ಹ ɻ • hyp = ೖࡳ ͱ φγ ͷ Α͏ ͳ ৯ ʹ ্ ͳ ຯ ɻ • hyp = ࣇۄ Ԃ ͱ φγ ͷ Α͏ ͳ ৯ ײ ʹ ্ ͳ ຯ ɻ • hyp = PA ͠Ό͘ ͱ ٳܜ ͷ Α͏ ͳ ৯ ͗͢ ʹ ্ ͳ ຯ ɻ • hyp = ͠Ό͘ ͠Ό͘ ͱ φγ ͷ Α͏ ͳ ৯ ײ ʹ ্ ͳ ຯ ɻ • hyp = ͠Ό͘ ͠Ό͘ ͱ ↑ ͷ Α͏ ͳ ৯ ײ ʹ ্ ͳ ຯ ɻ • hyp = ͠Ό͘ ͠Ό͘ ͱ ↑ ͷ Α͏ ͳ ৯ ײ ʹ ্ ͳ ຯ ɻ • hyp = ͠Ό͘ ͠Ό͘ ͱ φγ ͷ ͳ ͳ ৯ ײ ʹ ্ ͳ ຯ ɻ • hyp = ͠Ό͘ ͠Ό͘ ͱ φγ ͷ Α͏ ͳ ৯ ײ ʹ ্ ͳ ຯ ɻ
ֶशͷਐΉ༷ࢠʢจਖ਼ղʣ
ֶशͷਐΉ༷ࢠʢจਖ਼ղʣ
จʹΑΔਖ਼ղͷมԽ
ਖ਼ॱͱٯॱͱͷൺֱ
ग़ྗΛٯॱʹͯ͠ΈΔͱ…ʁ
͜͜·Ͱͷߟ • จΛؒҧ͍͑͢໌Β͔Ͱ͋Δ • ٯॱͰೖྗͨ͠΄͏͕ੑೳ͕Α͍ • ΘΓʹग़ྗΛٯॱʹͯ͠Α͍ • ֶशΛ్தͰԼ͛ΔͷޮՌతͰ͋Δ
ඍົʹೖྗΛม͑ͯΈΔͱʁ ʮձࣾͰΠϯϑϧΤϯβ͕େྲྀߦ͍ͯ͠Δɻʯ ೖྗɿձࣾͰϯϑϧΤϯβ͕େྲྀߦ͍ͯ͠Δɻ ग़ྗɿձࣾͰϯϑϧΤϯβ͕େྲྀͦʹ͍Δɻ ೖྗɿձࣾͰΠϑϧΤϯβ͕େྲྀߦ͍ͯ͠Δɻ ग़ྗɿձࣾͰΠϑϧΤϯβ͕େྲྀ͍ͦ͠Δɻ ೖྗɿΠϯϑϧΤϯβ ग़ྗɿΠϯϑϧΤϯτ
ผͷྫͰṖͷ่յ ೖྗɿձࣾͰΠϯϑϧϯΤβ͕େྲྀߦ͍ͯ͠Δɻ ग़ྗɿձࣾͰΠϯϑϧϯΤϨʢ໙Θ։ྲྀͩ૿ خɻ
ೲಘͰ͖Δؒҧ͍ྫ ೖྗɿࢲʰिؒগαϯσʔʱΛຖिߪಡ͠ ͍ͯ·͢ɻ ग़ྗɿࢲʰिؒগαϯσʔΛΛຖങಡ͠ ͍ͯ·͢ɻ
ೖྗΛม͑ͯΈͯͷߟ • ͍จͰࣦഊ͢Δ͜ͱ͕͋Δ • 1จࣈ่͚ͩΕΔ߹͋Δ͕ɺ్த͔Βେ่ յΛ࢝ΊΔ߹͋Δ • िͱΛؒҧ͑ͨΓɺ༻๏͕ࣅͨจࣈΛؒҧ ͍͑ͯΔྫݟΒΕΔ
ࠓޙͷ՝ • ͬͱͪΌΜͱ࣮ͨ͠ݧ • ΑΓൣͳύϥϝʔλʔ୳ࡧ • 2ɺ3ͷLSTMͷར༻ • dropoutͷར༻ •
ঢ়ଶͷՄࢹԽ
·ͱΊ • LSTMʹจΛ෮ݩͤͯ͞Έͨ • ࣮ࡍɺͦΕͳΓʹ෮ݩͰ͖Δ • ೖྗΛٯॱʹ͢ΔΘΓʹɺग़ྗΛٯॱʹ͠ ͯΑ͍͜ͱ͕Θ͔ͬͨ
࠷ۙͷؔ࿈ݚڀ • http://arxiv.org/abs/1506.02078 • LSTMͷՄࢹԽ • http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.1.3412&rep=rep1&type=pdf • RNNͰจ຺ࣗ༝จ๏ΛύʔεͰ͖Δ
• http://www.aclweb.org/anthology/P/P15/ P15-1107.pdf • Sentence Auto encoderͷ࣮ݧ