Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
EMNLP2015読み会:Effective Approaches to Attention-...
Search
tkng
October 24, 2015
Research
2
3.9k
EMNLP2015読み会:Effective Approaches to Attention-based Neural Machine Translation
tkng
October 24, 2015
Tweet
Share
More Decks by tkng
See All by tkng
LSTMを用いた自然言語処理について
tkng
3
3.7k
自然言語処理と深層学習の最先端
tkng
16
7.6k
basis-of-optimization.pdf
tkng
1
1.3k
Other Decks in Research
See All in Research
Intrinsic Self-Supervision for Data Quality Audits
fabiangroeger
0
350
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
470
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
9
2.7k
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
1.8k
Gemini と Looker で営業DX をドライブする / Driving Sales DX with Gemini and Looker
sansan_randd
0
130
インドネシアのQA事情を紹介するの
yujijs
0
110
言語モデルLUKEを経済の知識に特化させたモデル「UBKE-LUKE」について
petter0201
0
250
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
310
複数データセットを用いた動作認識
yuyay
0
120
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
5k
DeepSeek-R1の論文から読み解く背景技術
personabb
3
360
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
1.1k
Featured
See All Featured
A Philosophy of Restraint
colly
203
16k
Why Our Code Smells
bkeepers
PRO
336
57k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Git: the NoSQL Database
bkeepers
PRO
428
65k
Scaling GitHub
holman
459
140k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Visualization
eitanlees
146
15k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
Side Projects
sachag
452
42k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Transcript
Effective Approaches to Attention-based Neural Machine Translation Authors: Minh-Thang LuongɹHieu
PhamɹChristopher D. Manning ಡΉਓ: ಙӬ೭ ਤશͯ͜ͷจ͔ΒҾ༻ &./-1ಡΈձ
ࣗݾհɿಙӬ೭ • Twitter ID: @tkng • εϚʔτχϡʔεגࣜձࣾͰNLPͬͯ·͢
ࠓͷจʁ • Effective Approaches to Attention-based Neural Machine Translation •
ڈ͙Β͍͔ΒྲྀߦΓ࢝Ίͨseq2seqܥͷख ๏ͷ֦ு
Seq2seq modelͱʁ • Encoder/Decoder modelͱݴ͏ • ༁ݩͷจΛݻఆͷϕΫτϧʹΤϯίʔυ ͯ͠ɺ͔ͦ͜Β༁ޙͷจΛσίʔυ͢Δ • ՄมͷσʔλऔΓѻ͍͕͍͠ͷͰɺ
͑ͯݻఆʹͯ͠͠·͏ͱ͍͏ൃ
Ͳ͏ͬͯݻఆʹΤϯίʔυ ͢Δͷʁ • recurrent neural networkΛ͏ • http://colah.github.io/posts/2015-08-Understanding-LSTMs/ • http://kaishengtai.github.io/static/slides/treelstm-acl2015.pdf
• LSTM = recurrent neural networkͷҰछ
Seq2seqϞσϧͰͷ༁
Seq2seq·ͰͷಓͷΓ (1) • Recurrent Continuous Translation Models (EMNLP2013) • Learning
Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation (EMNLP2014)
Seq2seq·ͰͷಓͷΓ (2) • Sequence to Sequence Learning with Neural Networks
(NIPS2014) • ൺֱతγϯϓϧͳStacked LSTM͕ྑ͍ੑೳΛ ࣔ͢͜ͱ͕࣮ݧͰࣔ͞Εͨ • ϏʔϜαʔνɺٯॱͰͷೖྗɺΞϯαϯϒϧ ͷ3छྨͷ͕ೖ͍ͬͯΔ
Seq2seqϞσϧͷऑ • จʹऑ͍ • ݻ༗໊ࢺ͕ೖΕସΘΔ
AttentionʹΑΔվળ [Bahdanau+ 2015] • DecodeͷࡍͷContextʹEncodeͷࡍͷ֤࣌ࠁ ʹ͓͚ΔӅΕঢ়ଶͷॏΈ͖Λ༻͍Δ • ॏΈࣗମRNNͰܭࢉ͢Δ
ࠓճͷจͷߩݙ • ৽͍͠attention (local attention) ΛఏҊͨ͠ • ༁ݩจʹ͓͍ͯɺҐஔɹ͔ΒલޙD୯ޠ ͷӅΕঢ়ଶͷॏΈ͖ΛऔΔ •
ॏΈͷܭࢉglobal attentionͷ߹ͱಉ༷ • ɹ1ͭͣͭਐΊ͍ͯ͘߹ʢlocal-mʣ ͱɺ͜ΕࣗମRNNʹ͢Δ߹ʢlocal- pʣͷ2ͭΛ࣮ݧ͍ͯ͠Δ pt pt
local attention
local attentionͷҹ • ޠॱ͕ࣅ͍ͯΔݴޠؒͰͷ༁ͳΒɺ໌Β͔ ʹ͜ͷํ͕ྑͦ͞͏ • ӳΈ͍ͨʹޠॱ͕େ͖͘ҧ͏߹ɺ Ґஔɹͷਪఆࣗମ͕͍͠λεΫʹͳͬͪΌ ͍ͦ͏… pt
࣮ݧ݁ՌɿWMT'14
࣮ݧ݁ՌɿWMT'14 • Α͘ݟΔͱɺlocal attentionͰͷੑೳ্ +0.9ϙΠϯτ • ଞͷςΫχοΫͰՔ͍ͰΔϙΠϯτ͕ଟ͍
࣮ݧ݁ՌɿWMT'15
͍͔ͭ͘༁αϯϓϧ
·ͱΊ • Seq2seqϞσϧͷ֦ுͱͯ͠ɺlocal attention ΛఏҊͨ͠ • ఏҊख๏͍͔ͭ͘ͷ࣮ݧʹ͓͍ͯɺState of the artͷੑೳΛୡͨ͠
ײ • Local attentionΛඍ • ྨࣅ͢Δख๏ͱ۩ମతʹͲ͏ҧ͏͔͕໌շʹ ॻ͔Ε͓ͯΓɺಡΈ͔ͬͨ͢ • AttentionΛཧղͰ͖ͯΑ͔ͬͨʢখฒײʣ