Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
EMNLP2015読み会:Effective Approaches to Attention-...
Search
tkng
October 24, 2015
Research
2
4k
EMNLP2015読み会:Effective Approaches to Attention-based Neural Machine Translation
tkng
October 24, 2015
Tweet
Share
More Decks by tkng
See All by tkng
LSTMを用いた自然言語処理について
tkng
3
3.7k
自然言語処理と深層学習の最先端
tkng
16
7.7k
basis-of-optimization.pdf
tkng
1
1.4k
Other Decks in Research
See All in Research
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
370
湯村研究室の紹介2025 / yumulab2025
yumulab
0
270
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
480
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
財務諸表監査のための逐次検定
masakat0
0
210
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
5
2.2k
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
460
Featured
See All Featured
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
57
37k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
400
Navigating Team Friction
lara
191
16k
A better future with KSS
kneath
240
18k
Designing Experiences People Love
moore
143
24k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
130
Amusing Abliteration
ianozsvald
0
69
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Designing for Performance
lara
610
69k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
0
950
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
330
Transcript
Effective Approaches to Attention-based Neural Machine Translation Authors: Minh-Thang LuongɹHieu
PhamɹChristopher D. Manning ಡΉਓ: ಙӬ೭ ਤશͯ͜ͷจ͔ΒҾ༻ &./-1ಡΈձ
ࣗݾհɿಙӬ೭ • Twitter ID: @tkng • εϚʔτχϡʔεגࣜձࣾͰNLPͬͯ·͢
ࠓͷจʁ • Effective Approaches to Attention-based Neural Machine Translation •
ڈ͙Β͍͔ΒྲྀߦΓ࢝Ίͨseq2seqܥͷख ๏ͷ֦ு
Seq2seq modelͱʁ • Encoder/Decoder modelͱݴ͏ • ༁ݩͷจΛݻఆͷϕΫτϧʹΤϯίʔυ ͯ͠ɺ͔ͦ͜Β༁ޙͷจΛσίʔυ͢Δ • ՄมͷσʔλऔΓѻ͍͕͍͠ͷͰɺ
͑ͯݻఆʹͯ͠͠·͏ͱ͍͏ൃ
Ͳ͏ͬͯݻఆʹΤϯίʔυ ͢Δͷʁ • recurrent neural networkΛ͏ • http://colah.github.io/posts/2015-08-Understanding-LSTMs/ • http://kaishengtai.github.io/static/slides/treelstm-acl2015.pdf
• LSTM = recurrent neural networkͷҰछ
Seq2seqϞσϧͰͷ༁
Seq2seq·ͰͷಓͷΓ (1) • Recurrent Continuous Translation Models (EMNLP2013) • Learning
Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation (EMNLP2014)
Seq2seq·ͰͷಓͷΓ (2) • Sequence to Sequence Learning with Neural Networks
(NIPS2014) • ൺֱతγϯϓϧͳStacked LSTM͕ྑ͍ੑೳΛ ࣔ͢͜ͱ͕࣮ݧͰࣔ͞Εͨ • ϏʔϜαʔνɺٯॱͰͷೖྗɺΞϯαϯϒϧ ͷ3छྨͷ͕ೖ͍ͬͯΔ
Seq2seqϞσϧͷऑ • จʹऑ͍ • ݻ༗໊ࢺ͕ೖΕସΘΔ
AttentionʹΑΔվળ [Bahdanau+ 2015] • DecodeͷࡍͷContextʹEncodeͷࡍͷ֤࣌ࠁ ʹ͓͚ΔӅΕঢ়ଶͷॏΈ͖Λ༻͍Δ • ॏΈࣗମRNNͰܭࢉ͢Δ
ࠓճͷจͷߩݙ • ৽͍͠attention (local attention) ΛఏҊͨ͠ • ༁ݩจʹ͓͍ͯɺҐஔɹ͔ΒલޙD୯ޠ ͷӅΕঢ়ଶͷॏΈ͖ΛऔΔ •
ॏΈͷܭࢉglobal attentionͷ߹ͱಉ༷ • ɹ1ͭͣͭਐΊ͍ͯ͘߹ʢlocal-mʣ ͱɺ͜ΕࣗମRNNʹ͢Δ߹ʢlocal- pʣͷ2ͭΛ࣮ݧ͍ͯ͠Δ pt pt
local attention
local attentionͷҹ • ޠॱ͕ࣅ͍ͯΔݴޠؒͰͷ༁ͳΒɺ໌Β͔ ʹ͜ͷํ͕ྑͦ͞͏ • ӳΈ͍ͨʹޠॱ͕େ͖͘ҧ͏߹ɺ Ґஔɹͷਪఆࣗମ͕͍͠λεΫʹͳͬͪΌ ͍ͦ͏… pt
࣮ݧ݁ՌɿWMT'14
࣮ݧ݁ՌɿWMT'14 • Α͘ݟΔͱɺlocal attentionͰͷੑೳ্ +0.9ϙΠϯτ • ଞͷςΫχοΫͰՔ͍ͰΔϙΠϯτ͕ଟ͍
࣮ݧ݁ՌɿWMT'15
͍͔ͭ͘༁αϯϓϧ
·ͱΊ • Seq2seqϞσϧͷ֦ுͱͯ͠ɺlocal attention ΛఏҊͨ͠ • ఏҊख๏͍͔ͭ͘ͷ࣮ݧʹ͓͍ͯɺState of the artͷੑೳΛୡͨ͠
ײ • Local attentionΛඍ • ྨࣅ͢Δख๏ͱ۩ମతʹͲ͏ҧ͏͔͕໌շʹ ॻ͔Ε͓ͯΓɺಡΈ͔ͬͨ͢ • AttentionΛཧղͰ͖ͯΑ͔ͬͨʢখฒײʣ