Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
EMNLP2015読み会:Effective Approaches to Attention-...
Search
tkng
October 24, 2015
Research
2
4.1k
EMNLP2015読み会:Effective Approaches to Attention-based Neural Machine Translation
tkng
October 24, 2015
Tweet
Share
More Decks by tkng
See All by tkng
LSTMを用いた自然言語処理について
tkng
3
3.7k
自然言語処理と深層学習の最先端
tkng
16
7.7k
basis-of-optimization.pdf
tkng
1
1.4k
Other Decks in Research
See All in Research
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
140
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
13
7.1k
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
20年前に50代だった人たちの今
hysmrk
0
130
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
480
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
190
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
190
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
680
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
300
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.2k
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
180
財務諸表監査のための逐次検定
masakat0
0
240
Featured
See All Featured
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
How Software Deployment tools have changed in the past 20 years
geshan
0
31k
Getting science done with accelerated Python computing platforms
jacobtomlinson
1
100
エンジニアに許された特別な時間の終わり
watany
106
230k
Code Reviewing Like a Champion
maltzj
527
40k
From π to Pie charts
rasagy
0
120
Being A Developer After 40
akosma
91
590k
The Invisible Side of Design
smashingmag
302
51k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
400
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
130
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Transcript
Effective Approaches to Attention-based Neural Machine Translation Authors: Minh-Thang LuongɹHieu
PhamɹChristopher D. Manning ಡΉਓ: ಙӬ೭ ਤશͯ͜ͷจ͔ΒҾ༻ &./-1ಡΈձ
ࣗݾհɿಙӬ೭ • Twitter ID: @tkng • εϚʔτχϡʔεגࣜձࣾͰNLPͬͯ·͢
ࠓͷจʁ • Effective Approaches to Attention-based Neural Machine Translation •
ڈ͙Β͍͔ΒྲྀߦΓ࢝Ίͨseq2seqܥͷख ๏ͷ֦ு
Seq2seq modelͱʁ • Encoder/Decoder modelͱݴ͏ • ༁ݩͷจΛݻఆͷϕΫτϧʹΤϯίʔυ ͯ͠ɺ͔ͦ͜Β༁ޙͷจΛσίʔυ͢Δ • ՄมͷσʔλऔΓѻ͍͕͍͠ͷͰɺ
͑ͯݻఆʹͯ͠͠·͏ͱ͍͏ൃ
Ͳ͏ͬͯݻఆʹΤϯίʔυ ͢Δͷʁ • recurrent neural networkΛ͏ • http://colah.github.io/posts/2015-08-Understanding-LSTMs/ • http://kaishengtai.github.io/static/slides/treelstm-acl2015.pdf
• LSTM = recurrent neural networkͷҰछ
Seq2seqϞσϧͰͷ༁
Seq2seq·ͰͷಓͷΓ (1) • Recurrent Continuous Translation Models (EMNLP2013) • Learning
Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation (EMNLP2014)
Seq2seq·ͰͷಓͷΓ (2) • Sequence to Sequence Learning with Neural Networks
(NIPS2014) • ൺֱతγϯϓϧͳStacked LSTM͕ྑ͍ੑೳΛ ࣔ͢͜ͱ͕࣮ݧͰࣔ͞Εͨ • ϏʔϜαʔνɺٯॱͰͷೖྗɺΞϯαϯϒϧ ͷ3छྨͷ͕ೖ͍ͬͯΔ
Seq2seqϞσϧͷऑ • จʹऑ͍ • ݻ༗໊ࢺ͕ೖΕସΘΔ
AttentionʹΑΔվળ [Bahdanau+ 2015] • DecodeͷࡍͷContextʹEncodeͷࡍͷ֤࣌ࠁ ʹ͓͚ΔӅΕঢ়ଶͷॏΈ͖Λ༻͍Δ • ॏΈࣗମRNNͰܭࢉ͢Δ
ࠓճͷจͷߩݙ • ৽͍͠attention (local attention) ΛఏҊͨ͠ • ༁ݩจʹ͓͍ͯɺҐஔɹ͔ΒલޙD୯ޠ ͷӅΕঢ়ଶͷॏΈ͖ΛऔΔ •
ॏΈͷܭࢉglobal attentionͷ߹ͱಉ༷ • ɹ1ͭͣͭਐΊ͍ͯ͘߹ʢlocal-mʣ ͱɺ͜ΕࣗମRNNʹ͢Δ߹ʢlocal- pʣͷ2ͭΛ࣮ݧ͍ͯ͠Δ pt pt
local attention
local attentionͷҹ • ޠॱ͕ࣅ͍ͯΔݴޠؒͰͷ༁ͳΒɺ໌Β͔ ʹ͜ͷํ͕ྑͦ͞͏ • ӳΈ͍ͨʹޠॱ͕େ͖͘ҧ͏߹ɺ Ґஔɹͷਪఆࣗମ͕͍͠λεΫʹͳͬͪΌ ͍ͦ͏… pt
࣮ݧ݁ՌɿWMT'14
࣮ݧ݁ՌɿWMT'14 • Α͘ݟΔͱɺlocal attentionͰͷੑೳ্ +0.9ϙΠϯτ • ଞͷςΫχοΫͰՔ͍ͰΔϙΠϯτ͕ଟ͍
࣮ݧ݁ՌɿWMT'15
͍͔ͭ͘༁αϯϓϧ
·ͱΊ • Seq2seqϞσϧͷ֦ுͱͯ͠ɺlocal attention ΛఏҊͨ͠ • ఏҊख๏͍͔ͭ͘ͷ࣮ݧʹ͓͍ͯɺState of the artͷੑೳΛୡͨ͠
ײ • Local attentionΛඍ • ྨࣅ͢Δख๏ͱ۩ମతʹͲ͏ҧ͏͔͕໌շʹ ॻ͔Ε͓ͯΓɺಡΈ͔ͬͨ͢ • AttentionΛཧղͰ͖ͯΑ͔ͬͨʢখฒײʣ