Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
EMNLP2015読み会:Effective Approaches to Attention-...
Search
tkng
October 24, 2015
Research
2
4k
EMNLP2015読み会:Effective Approaches to Attention-based Neural Machine Translation
tkng
October 24, 2015
Tweet
Share
More Decks by tkng
See All by tkng
LSTMを用いた自然言語処理について
tkng
3
3.7k
自然言語処理と深層学習の最先端
tkng
16
7.7k
basis-of-optimization.pdf
tkng
1
1.4k
Other Decks in Research
See All in Research
線形判別分析のPU学習による朝日歌壇短歌の分析
masakat0
0
130
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
980
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
satai
3
240
チャッドローン:LLMによる画像認識を用いた自律型ドローンシステムの開発と実験 / ec75-morisaki
yumulab
1
440
Cross-Media Information Spaces and Architectures
signer
PRO
0
220
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
520
rtrec@dbem6
myui
6
860
NLP2025参加報告会 LT資料
hargon24
1
320
SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery
satai
3
210
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
410
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
14k
NLP2025 WS Shared Task 文法誤り訂正部門 ehiMetrick
sugiyamaseiji
0
190
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.5k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Scaling GitHub
holman
459
140k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
A Tale of Four Properties
chriscoyier
160
23k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
490
Automating Front-end Workflow
addyosmani
1370
200k
A Modern Web Designer's Workflow
chriscoyier
694
190k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Transcript
Effective Approaches to Attention-based Neural Machine Translation Authors: Minh-Thang LuongɹHieu
PhamɹChristopher D. Manning ಡΉਓ: ಙӬ೭ ਤશͯ͜ͷจ͔ΒҾ༻ &./-1ಡΈձ
ࣗݾհɿಙӬ೭ • Twitter ID: @tkng • εϚʔτχϡʔεגࣜձࣾͰNLPͬͯ·͢
ࠓͷจʁ • Effective Approaches to Attention-based Neural Machine Translation •
ڈ͙Β͍͔ΒྲྀߦΓ࢝Ίͨseq2seqܥͷख ๏ͷ֦ு
Seq2seq modelͱʁ • Encoder/Decoder modelͱݴ͏ • ༁ݩͷจΛݻఆͷϕΫτϧʹΤϯίʔυ ͯ͠ɺ͔ͦ͜Β༁ޙͷจΛσίʔυ͢Δ • ՄมͷσʔλऔΓѻ͍͕͍͠ͷͰɺ
͑ͯݻఆʹͯ͠͠·͏ͱ͍͏ൃ
Ͳ͏ͬͯݻఆʹΤϯίʔυ ͢Δͷʁ • recurrent neural networkΛ͏ • http://colah.github.io/posts/2015-08-Understanding-LSTMs/ • http://kaishengtai.github.io/static/slides/treelstm-acl2015.pdf
• LSTM = recurrent neural networkͷҰछ
Seq2seqϞσϧͰͷ༁
Seq2seq·ͰͷಓͷΓ (1) • Recurrent Continuous Translation Models (EMNLP2013) • Learning
Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation (EMNLP2014)
Seq2seq·ͰͷಓͷΓ (2) • Sequence to Sequence Learning with Neural Networks
(NIPS2014) • ൺֱతγϯϓϧͳStacked LSTM͕ྑ͍ੑೳΛ ࣔ͢͜ͱ͕࣮ݧͰࣔ͞Εͨ • ϏʔϜαʔνɺٯॱͰͷೖྗɺΞϯαϯϒϧ ͷ3छྨͷ͕ೖ͍ͬͯΔ
Seq2seqϞσϧͷऑ • จʹऑ͍ • ݻ༗໊ࢺ͕ೖΕସΘΔ
AttentionʹΑΔվળ [Bahdanau+ 2015] • DecodeͷࡍͷContextʹEncodeͷࡍͷ֤࣌ࠁ ʹ͓͚ΔӅΕঢ়ଶͷॏΈ͖Λ༻͍Δ • ॏΈࣗମRNNͰܭࢉ͢Δ
ࠓճͷจͷߩݙ • ৽͍͠attention (local attention) ΛఏҊͨ͠ • ༁ݩจʹ͓͍ͯɺҐஔɹ͔ΒલޙD୯ޠ ͷӅΕঢ়ଶͷॏΈ͖ΛऔΔ •
ॏΈͷܭࢉglobal attentionͷ߹ͱಉ༷ • ɹ1ͭͣͭਐΊ͍ͯ͘߹ʢlocal-mʣ ͱɺ͜ΕࣗମRNNʹ͢Δ߹ʢlocal- pʣͷ2ͭΛ࣮ݧ͍ͯ͠Δ pt pt
local attention
local attentionͷҹ • ޠॱ͕ࣅ͍ͯΔݴޠؒͰͷ༁ͳΒɺ໌Β͔ ʹ͜ͷํ͕ྑͦ͞͏ • ӳΈ͍ͨʹޠॱ͕େ͖͘ҧ͏߹ɺ Ґஔɹͷਪఆࣗମ͕͍͠λεΫʹͳͬͪΌ ͍ͦ͏… pt
࣮ݧ݁ՌɿWMT'14
࣮ݧ݁ՌɿWMT'14 • Α͘ݟΔͱɺlocal attentionͰͷੑೳ্ +0.9ϙΠϯτ • ଞͷςΫχοΫͰՔ͍ͰΔϙΠϯτ͕ଟ͍
࣮ݧ݁ՌɿWMT'15
͍͔ͭ͘༁αϯϓϧ
·ͱΊ • Seq2seqϞσϧͷ֦ுͱͯ͠ɺlocal attention ΛఏҊͨ͠ • ఏҊख๏͍͔ͭ͘ͷ࣮ݧʹ͓͍ͯɺState of the artͷੑೳΛୡͨ͠
ײ • Local attentionΛඍ • ྨࣅ͢Δख๏ͱ۩ମతʹͲ͏ҧ͏͔͕໌շʹ ॻ͔Ε͓ͯΓɺಡΈ͔ͬͨ͢ • AttentionΛཧղͰ͖ͯΑ͔ͬͨʢখฒײʣ