Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An-Operation-Network-for-Abstractive-Sentence-C...
Search
MARUYAMA
July 25, 2018
0
100
An-Operation-Network-for-Abstractive-Sentence-Compression.pdf
MARUYAMA
July 25, 2018
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
vampire.pdf
tmaru0204
0
190
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
200
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
190
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
180
20191028_literature-review.pdf
tmaru0204
0
160
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
150
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
180
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
160
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
Featured
See All Featured
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Believing is Seeing
oripsolob
1
56
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
190
The Curious Case for Waylosing
cassininazir
0
240
Faster Mobile Websites
deanohume
310
31k
[SF Ruby Conf 2025] Rails X
palkan
1
760
Become a Pro
speakerdeck
PRO
31
5.8k
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
250
What's in a price? How to price your products and services
michaelherold
247
13k
From π to Pie charts
rasagy
0
120
Being A Developer After 40
akosma
91
590k
Transcript
An Operation Network for Abstractive Sentence Compression Naitong Yu, Jie
Zhang, Minlie Huang, Xiaoyan Zhu The 27th International Conference on Computational Linguistics (COLING 2018) Nagaoka University of Technology Takumi Maruyama Literature review:
Introduction Ø %*, • % (" %+ Ø 2
• Delete-based approach • Generate-based approach Ø 0/- • %*, )&.$ • Delete-based approach Generate-based approach # State-of-the-art'!
Introduction Ø Delete-based approach • )+59G%?7”” • 5BC””FE6 D2
• “” & $(5BC@ Ø Generate-based approach • “=;””>A”, “.<”, “H)”& • ,4*”=;”/0 8: Delete-based approachGenerate-based approach /' “=;”-) "!#31
Baselines Ø Seq2seq (generate-only model)
Baselines Ø Pointer-Generator (copy-and-generate model)
Method Ø Operation Network
Method Ø Delete decoder • • !" ∈ $, &
'( : *+,ℎ.//01 '2320, 4( : 4512062 704258 0(6( ): 6( 0;<0//.1=
Method Ø Copy-Generate decoder • Generate probability Generate modeCopy mode
- Generate mode - Copy mode attention distribution • Final probability distribution
Method Ø Copy-Generate decoder •
Dataset Ø Toutanova et al. (2016) • Business letters, news
journals, technical documents • Training set: 21, 145 pairs Validation set: 1,908 pairs Test set: 3,370 pairs
Evaluation Metrics Ø Automatic evaluation • Compression Ratio • ROUGE
(ROUGE-1, ROUGE-2, ROUGE-L) • BLEU Ø Manual evaluation • Grammaticality • Non-Redundancy
Results
Results
Conclusion Ø Delete-based approachGenerate-based approach Ø Delete
Ø Abstractive sentence compressionSOTA