Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An-Operation-Network-for-Abstractive-Sentence-C...
Search
MARUYAMA
July 25, 2018
0
96
An-Operation-Network-for-Abstractive-Sentence-Compression.pdf
MARUYAMA
July 25, 2018
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
vampire.pdf
tmaru0204
0
170
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
180
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
170
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
160
20191028_literature-review.pdf
tmaru0204
0
150
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
130
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
160
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
150
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
150
Featured
See All Featured
Visualization
eitanlees
146
16k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Faster Mobile Websites
deanohume
307
31k
Side Projects
sachag
455
42k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Why Our Code Smells
bkeepers
PRO
337
57k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Fireside Chat
paigeccino
37
3.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
950
Transcript
An Operation Network for Abstractive Sentence Compression Naitong Yu, Jie
Zhang, Minlie Huang, Xiaoyan Zhu The 27th International Conference on Computational Linguistics (COLING 2018) Nagaoka University of Technology Takumi Maruyama Literature review:
Introduction Ø %*, • % (" %+ Ø 2
• Delete-based approach • Generate-based approach Ø 0/- • %*, )&.$ • Delete-based approach Generate-based approach # State-of-the-art'!
Introduction Ø Delete-based approach • )+59G%?7”” • 5BC””FE6 D2
• “” & $(5BC@ Ø Generate-based approach • “=;””>A”, “.<”, “H)”& • ,4*”=;”/0 8: Delete-based approachGenerate-based approach /' “=;”-) "!#31
Baselines Ø Seq2seq (generate-only model)
Baselines Ø Pointer-Generator (copy-and-generate model)
Method Ø Operation Network
Method Ø Delete decoder • • !" ∈ $, &
'( : *+,ℎ.//01 '2320, 4( : 4512062 704258 0(6( ): 6( 0;<0//.1=
Method Ø Copy-Generate decoder • Generate probability Generate modeCopy mode
- Generate mode - Copy mode attention distribution • Final probability distribution
Method Ø Copy-Generate decoder •
Dataset Ø Toutanova et al. (2016) • Business letters, news
journals, technical documents • Training set: 21, 145 pairs Validation set: 1,908 pairs Test set: 3,370 pairs
Evaluation Metrics Ø Automatic evaluation • Compression Ratio • ROUGE
(ROUGE-1, ROUGE-2, ROUGE-L) • BLEU Ø Manual evaluation • Grammaticality • Non-Redundancy
Results
Results
Conclusion Ø Delete-based approachGenerate-based approach Ø Delete
Ø Abstractive sentence compressionSOTA