Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An-Operation-Network-for-Abstractive-Sentence-C...
Search
MARUYAMA
July 25, 2018
0
98
An-Operation-Network-for-Abstractive-Sentence-Compression.pdf
MARUYAMA
July 25, 2018
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
vampire.pdf
tmaru0204
0
180
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
190
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
180
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
20191028_literature-review.pdf
tmaru0204
0
160
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
140
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
170
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
160
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
160
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1032
470k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Writing Fast Ruby
sferik
629
62k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Scaling GitHub
holman
463
140k
Speed Design
sergeychernyshev
32
1.2k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Being A Developer After 40
akosma
91
590k
Building an army of robots
kneath
306
46k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Transcript
An Operation Network for Abstractive Sentence Compression Naitong Yu, Jie
Zhang, Minlie Huang, Xiaoyan Zhu The 27th International Conference on Computational Linguistics (COLING 2018) Nagaoka University of Technology Takumi Maruyama Literature review:
Introduction Ø %*, • % (" %+ Ø 2
• Delete-based approach • Generate-based approach Ø 0/- • %*, )&.$ • Delete-based approach Generate-based approach # State-of-the-art'!
Introduction Ø Delete-based approach • )+59G%?7”” • 5BC””FE6 D2
• “” & $(5BC@ Ø Generate-based approach • “=;””>A”, “.<”, “H)”& • ,4*”=;”/0 8: Delete-based approachGenerate-based approach /' “=;”-) "!#31
Baselines Ø Seq2seq (generate-only model)
Baselines Ø Pointer-Generator (copy-and-generate model)
Method Ø Operation Network
Method Ø Delete decoder • • !" ∈ $, &
'( : *+,ℎ.//01 '2320, 4( : 4512062 704258 0(6( ): 6( 0;<0//.1=
Method Ø Copy-Generate decoder • Generate probability Generate modeCopy mode
- Generate mode - Copy mode attention distribution • Final probability distribution
Method Ø Copy-Generate decoder •
Dataset Ø Toutanova et al. (2016) • Business letters, news
journals, technical documents • Training set: 21, 145 pairs Validation set: 1,908 pairs Test set: 3,370 pairs
Evaluation Metrics Ø Automatic evaluation • Compression Ratio • ROUGE
(ROUGE-1, ROUGE-2, ROUGE-L) • BLEU Ø Manual evaluation • Grammaticality • Non-Redundancy
Results
Results
Conclusion Ø Delete-based approachGenerate-based approach Ø Delete
Ø Abstractive sentence compressionSOTA