Upgrade to PRO for Only $50/YearβLimited-Time Offer! π₯
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An-Operation-Network-for-Abstractive-Sentence-C...
Search
MARUYAMA
July 25, 2018
0
100
Β An-Operation-Network-for-Abstractive-Sentence-Compression.pdf
MARUYAMA
July 25, 2018
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
vampire.pdf
tmaru0204
0
190
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
200
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
190
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
20191028_literature-review.pdf
tmaru0204
0
160
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
150
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
170
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
160
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
Featured
See All Featured
Navigating Team Friction
lara
191
16k
Fireside Chat
paigeccino
41
3.7k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.8k
RailsConf 2023
tenderlove
30
1.3k
Automating Front-end Workflow
addyosmani
1371
200k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Designing Experiences People Love
moore
143
24k
Transcript
An Operation Network for Abstractive Sentence Compression Naitong Yu, Jie
Zhang, Minlie Huang, Xiaoyan Zhu The 27th International Conference on Computational Linguistics (COLING 2018) Nagaoka University of Technology Takumi Maruyama Literature review:
Introduction Γ %*, β’ % (" %+ Γ 2
β’ Delete-based approach β’ Generate-based approach Γ 0/- β’ %*, )&.$ β’ Delete-based approach Generate-based approach # State-of-the-art'!
Introduction Γ Delete-based approach β’ )+59G%?7ββ β’ 5BCββFE6 D2
β’ ββ & $(5BC@ Γ Generate-based approach β’ β=;ββ>Aβ, β.<β, βH)β& β’ ,4*β=;β/0 8: Delete-based approachGenerate-based approach /' β=;β-) "!#31
Baselines Γ Seq2seq (generate-only model)
Baselines Γ Pointer-Generator (copy-and-generate model)
Method Γ Operation Network
Method Γ Delete decoder β’ β’ !" β $, &
'( : *+,β.//01 '2320, 4( : 4512062 704258 0(6( ): 6( 0;<0//.1=
Method Γ Copy-Generate decoder β’ Generate probability Generate modeCopy mode
- Generate mode - Copy mode attention distribution β’ Final probability distribution
Method Γ Copy-Generate decoder β’
Dataset Γ Toutanova et al. (2016) β’ Business letters, news
journals, technical documents β’ Training set: 21, 145 pairs Validation set: 1,908 pairs Test set: 3,370 pairs
Evaluation Metrics Γ Automatic evaluation β’ Compression Ratio β’ ROUGE
(ROUGE-1, ROUGE-2, ROUGE-L) β’ BLEU Γ Manual evaluation β’ Grammaticality β’ Non-Redundancy
Results
Results
Conclusion Γ Delete-based approachGenerate-based approach Γ Delete
Γ Abstractive sentence compressionSOTA