Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NLP2019_report.pdf
Search
MARUYAMA
March 19, 2019
0
130
NLP2019_report.pdf
MARUYAMA
March 19, 2019
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
vampire.pdf
tmaru0204
0
180
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
190
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
180
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
160
20191028_literature-review.pdf
tmaru0204
0
150
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
140
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
160
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
150
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
150
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
RailsConf 2023
tenderlove
30
1.2k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Optimizing for Happiness
mojombo
379
70k
Six Lessons from altMBA
skipperchong
28
4k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Writing Fast Ruby
sferik
628
62k
Being A Developer After 40
akosma
90
590k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
How STYLIGHT went responsive
nonsquared
100
5.8k
Transcript
ݴޠॲཧֶձ ୈճ࣍େձ ࢀՃใࠂ Ԭٕज़Պֶେֶɹؙࢁւ
ใࠂ༰ ⾣ ΫΤϦɾग़ྗΛߟྀՄೳͳจॻཁϞσϧ ⾣ ग़ྗ੍ޚΛߟྀͨ͠ݟग़͠ੜϞσϧͷͨΊͷ େنίʔύε ਓݟ༤ଠ, ాޱ༤࠸, ాल໌ (ே৽ฉ),
٠ాᔨ, ௗӋೋ (ϨτϦό), Ԭ࡚؍ (౦େ), ס݈ଠ (౦େ), Ԟଜֶ (౦େ) ੪౻͍ͭΈ, ాژհ, େ௩३࢙, ాޫำ, ઙٱࢠ, ా४ೋ (NTT)
ΫΤϦɾग़ྗΛߟྀՄೳͳจॻཁϞσϧ ⾣ ֓ཁ ɾΫΤϦͱग़ྗΛಉ࣌ʹߟྀͰ͖Δ౷ҰతͳϞσϧΛఏҊ ɾ༰બϞσϧ ੜϞσϧ ⾣ ߩݙ ɾ༰બϞσϧʹ͓͚ΔΫΤϦґଘɾඇґଘͷߟྀ ɾ༰બϞσϧʹ͓͚Δग़ྗͷ੍ޚ
ΫΤϦɾग़ྗΛߟྀՄೳͳจॻཁϞσϧ ⾣ ఏҊϞσϧ ɾ༰બϞσϧ ΫΤϦґଘҙػߏʹΑΓɺΫΤϦʹج͍ͮͨॏཁ୯ޠΛબ ΫΤϦඇґଘ୯ޠͷॏཁֶशύϥϝʔλʹؚΊΔ ग़ྗ੍ޚࢀরཁจͷFNCFEEJOHΛೖྗ
ΫΤϦɾग़ྗΛߟྀՄೳͳจॻཁϞσϧ ⾣ ఏҊϞσϧ ɾੜϞσϧ ༰બϞσϧʹΑΔ୯ޠͷॏΈ QPJOUFSHFOFSBUPSNPEFM ग़ྗ੍ޚଘ͞FNCFEEJOHΛೖྗ
ΫΤϦɾग़ྗΛߟྀՄೳͳจॻཁϞσϧ ⾣ ݁Ռ ɾग़ྗΛ͘͢Δͱɺࣝผˢɾ࠶ݱˣ ɾ͍จதʹΑΓॏཁͳใΛ٧ΊࠐΉ͜ͱ͕Ͱ͖͍ͯΔ
ΫΤϦɾग़ྗΛߟྀՄೳͳจॻཁϞσϧ ⾣ ݁Ռ
ग़ྗ੍ޚΛߟྀͨ͠ݟग़͠ੜϞσϧͷͨΊͷେنίʔύε ⾣ ֓ཁ ɾग़ྗ੍ޚϞσϧΛධՁ༻ίʔύεΛߏங ɾຊޠͷݟग़͠ੜͷͨΊͷֶश༻ίʔύεΛߏங +BQBOFTF.VMUJ-FOHUI)FBE-JOF$PSQVT +".6- +BQBOFTF/FXT$PSQVT +/$
ग़ྗ੍ޚΛߟྀͨ͠ݟग़͠ੜϞσϧͷͨΊͷେنίʔύε ⾣ ίʔύε
ग़ྗ੍ޚΛߟྀͨ͠ݟग़͠ੜϞσϧͷͨΊͷେنίʔύε ⾣ ίʔύε ɾ+".6- ࢴ໘ݟग़͠ ͓Αͼ จࣈͷ֤σδλϧݟग़͠ ݄d݄ͷؒʹ৴͞Εͨهࣄ
݅ ɾ+/$ dͷؒʹ৴͞Εͨهࣄ ࢴ໘ݟग़͠ ݅ IUUQXXXBTBIJDPNTIJNCVONFEJBMBC+".6- ແঈ IUUQXXXBTBIJDPNTIJNCVONFEJBMBC+/$ ༗ঈ
ใࠂ༰ ⾣ ΫΤϦɾग़ྗΛߟྀՄೳͳจॻཁϞσϧ ⾣ ग़ྗ੍ޚΛߟྀͨ͠ݟग़͠ੜϞσϧͷͨΊͷ େنίʔύε ਓݟ༤ଠ, ాޱ༤࠸, ాल໌ (ே৽ฉ),
٠ాᔨ, ௗӋೋ (ϨτϦό), Ԭ࡚؍ (౦େ), ס݈ଠ (౦େ), Ԟଜֶ (౦େ) ੪౻͍ͭΈ, ాژհ, େ௩३࢙, ాޫำ, ઙٱࢠ, ా४ೋ (NTT)