Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
オンライン広告関連の論文を50本くらい雑に紹介する AdKDD編 / adkdd-all
Search
todesking
December 13, 2019
4
2.2k
オンライン広告関連の論文を50本くらい雑に紹介する AdKDD編 / adkdd-all
todesking
December 13, 2019
Tweet
Share
More Decks by todesking
See All by todesking
自作言語進捗 2020 Mar / ojaml-2020-mar
todesking
0
360
バンディット問題の理論とアルゴリズム 第8章 / bandit-8
todesking
0
91
オンライン広告におけるCTR/CVR推定関係の論文を30本くらい雑に紹介する / rtb-papers-ctr
todesking
3
1.6k
バンディット問題の理論とアルゴリズム 第二章 / bandit2
todesking
0
130
自作言語進捗 2019 May / ojaml-2019-may
todesking
0
910
自作言語進捗 2019 Mar
todesking
0
450
ベイズ統計モデリング 10 // Doing Bayesian Data Analysis Chapter 10
todesking
0
100
実行時におけるJVMバイトコード最適化手法
todesking
16
12k
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Site-Speed That Sticks
csswizardry
2
190
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
Making the Leap to Tech Lead
cromwellryan
133
9k
The Cost Of JavaScript in 2023
addyosmani
45
7k
A Tale of Four Properties
chriscoyier
157
23k
Speed Design
sergeychernyshev
25
670
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Transcript
ΦϯϥΠϯࠂؔ࿈ͷจΛ 50ຊ͘Β͍ࡶʹհ͢Δ AdKDDฤ @todesking
ࣗݾհ • @todesking • DSP/ΞυωοτϫʔΫͷձࣾ ͰػցֶशΛ͍ͬͯΔ • ࠒͷٕज़ௐ͕ࠪΓͳ͍ͳ ͱࢥͬͨͷͰAdKDDͷจΛ ோΊͯΈ·ͨ͠
AdKDD/TargetADͱ • KDD: Knowledge Discovery and Data Mining • σʔλϚΠχϯάػցֶशʹؔ͢ΔԠ༻తͳΛѻ͏ࠃࡍ
ձٞ • AdKDD: ΦϯϥΠϯࠂؔ࿈ٕज़Λѻ͏Պձ • TargetAd: WSDMͱ͍͏ࠃࡍձٞʹ͓͍ͯΦϯϥΠϯࠂؔ࿈ٕज़ Λѻ͏Պձ • ࠷ۙAdKDDʹٵऩ͞Εͨ? • ࠾จຖ10ຊऑ • KDDຊମʹࠂܥจ͕͋Δ(Έ͚Ṗ)
ҙ • ཁ΄΅AbstractோΊ͚ͨͩɺਖ਼֬͞อূ͠·ͤΜ • ؒҧ͍ͷࢦఠܴ • ۙͷจެࣜαΠτ͔ΒPDFͷϦϯΫ͕͋Δ • Keynote/Invited talkলུ
AdKDD 2014 https://dblp.org/db/conf/kdd/adkdd2014
A Dynamic Pricing Model for Unifying Programmatic Guarantee and Real-Time
Bidding in Display Advertising • publisher͕impΛചΔʹRTBͱguranteed contractͱ͍ ͏ೋͭͷํ๏͕͋Δ • publisherͷऩӹΛදݱ͢ΔཧϞσϧΛ࡞Γɺೋͭͷํ ๏ͷ༧ࢉΛ࠷దԽ͢Δ
Multi-Touch Attribution Based Budget Allocation in Online Advertising • Ωϟϯϖʔϯશମͷ༧ࢉ͕ܾ·͓ͬͯΓɺԼҐͷΩϟϯ
ϖʔϯʹ͍ͨ͠ • ඪͷߩݙʹԠ͍ͯͨ͡͠ˠlast-touch/multi- touch attributionͷใΛݩʹׂͯ͠ΓͯΔํ๏Λ࣮ ͨ͠
Pleasing the advertising oracle: Probabilistic prediction from sampled, aggregated ground
truth • ࠂΩϟϯϖʔϯͷηάϝϯτਫ਼Λୈࡾऀ͕ධՁ͢Δ έʔε • ධՁͱͯ͠ɺࠂΛݟͨϢʔβͷσϞάϥଐੑͷׂ߹͕ ϑΟʔυόοΫ͞ΕΔ • ݸผϢʔβͷଐੑʹ͍ͭͯͷใಘΒΕͳ͍ • ͜ͷใΛͬͯηάϝϯτͷਫ਼Λվળ͢Δ
The PlaceIQ Analytic Platform: Location Oriented Approaches to Mobile Audiences
• PlaceIQͱ͍͏Ґஔϕʔεͷࠂੳπʔϧͷհ
Practical Lessons from Predicting Clicks on Ads at Facebook •
ஶ໊ͳΦϯϥΠϯࠂจ • FBͷCTR༧ଌϞσϧͷ࣮ʹ͍ͭͯ
iPinYou Global RTB Bidding Algorithm Competition Dataset • iPinYouͱ͍͏DSP͕ओ࠵ͨ͠RTBΞϧΰϦζϜͷίϯς ετͰ༻͞Εͨσʔληοτʹ͍ͭͯ
• ͜ͷσʔληοτRTBܥϩδοΫͷ࣮ݧʹΑ͘ΘΕͯ ͍Δ
Can Television Advertising Impact Be Measured on the Web? Web
Spike Response as a Possible Conversion Tracking System for Television. • ςϨϏࢹௌऀಉ࣌ʹΠϯλʔωοτΔͷͰɺςϨϏ CMͷࢹௌ͕ेඵޙͷωοτ׆ಈʹӨڹΛ༩͑Δ • ͜ͷΑ͏ͳӨڹΛܭଌ͢ΔͨΊͷwebϕʔεγεςϜΛ։ ൃͨ͠
TargetAd 2016 https://sites.google.com/site/targetad2016/program
TargetAd 2016 https://sites.google.com/site/targetad2016/program
TargetAd 2016 https://sites.google.com/site/targetad2016/program
Distributed Representations of Web Browsing Sequences for Ad Targeting •
ϢʔβͷϒϥδϯάཤྺΛಛྔԽ͍ͨ͠ • ϢʔβΛparagraphɺURLΛwordʹݟཱͯͯParagraph Vector(W2VͷੜɺύϥάϥϑͷembeddingΛಘΒΕΔ) Λߏங͢Δͱ͍͏ͷΛલճͬͨ • Backward PV-DMͱ͍͏վྑ൛ͷఏҊ
Sponsored Video Advertising: Filling the Void between Online and TV
Advertising • Ϣʔβ͕ಈըΛࢹௌ͍ͯ͠Δͱ͖ʹࠂΛݟ͍ͤͨɺݟͤ ·͘Γ͍ͨͱ͍͏ڧ͍ؾ͕࣋ͪ͋Δ • ಈըʹؔ࿈͢Δࠂͷ՝ۚମܥʹ͍ͭͯͷఏҊ
On Spatial-Aware Viral Marketing for Location-based Advertisements, • ৽͍͠ళΛ։͖͍ͨ߹ɺళͷॴɺޱίϛͷޮՌɺ ཧࠂͷॴͳͲͷཁૉ͕ച্͛ʹӨڹΛ༩͑Δɻ
• ͦͷΑ͏ͳ੍ͷԼͰ࠷దͳީิΛબͿํ๏ΛఏҊ
Keynote: Come back soon! Estimating return times for users •
ߦಈཤྺΛݩʹɺϢʔβ͕࣍ʹ͜ͷαʔϏεΛ͏ͷ ͍͔ͭਪఆ͍ͨ͠ • ੜଘੳɺաఔɺLSTM
Building a Bi-directed Recommendation System for Mobile Users and App-install
Ad Campaigns • ϞόΠϧΞϓϦʹؔ͢ΔํϨίϝϯσʔγϣϯγες Ϝ • ΞϓϦͷࠂΩϟϯϖʔϯʹରͯ͠ɺޮՌతͳϢʔβηά ϝϯτΛਪન • Ϣʔβʹରͯ͠ɺڵຯΛ࣋ͪͦ͏ͳΞϓϦΛਪન
Finding Needle in a Million Metrics: Anomaly Detection in a
Large-scale Computational Advertising Platform • ࠂϓϥοτϑΥʔϜʹ͓͚Δҟৗݕ • Ξυϑϥυͷจ຺Ͱͳ͘ɺγεςϜͷҟৗΛݕग़͢Δ ͷ͕త • ҆ఆͨ͠ύϑΥʔϚϯεΛग़͍ͯ͠ΔΩϟϯϖʔϯΛ؍ଌ • ύϑΥʔϚϯεʹҟৗ͕͋ͬͨΒɺγεςϜଆʹݪҼ͕ ͋ΔՄೳੑ͕ߴ͍
Preserving Privacy in Geo- Targeted Advertising • ҬͱऩೖΛͬͨλʔήςΟϯάࠂΛߟ͑Δ • ߈ܸऀτϐοΫϞσϦϯάػցֶशΛ͏͜ͱͰɺ͋
Δࠂ͕දࣔ͞ΕͨϢʔβͷҬऩೖΛਪఆͰ͖Δ • ৴͞ΕΔࠂʹϊΠζΛࠞͥΔ͜ͱͰ͜ͷΑ͏ͳਪఆΛ ͛Δ
Invited talk: User Recommendation in Instagram • Instagramʹ͓͚Δ͓͢͢ΊϢʔβͷΈ • ιʔγϟϧάϥϑͷߏڵຯͷ͋ΔτϐοΫΛͬͨਪ
ન
Demographic Prediction of Web Requests from Labeled Aggregate Data •
Ϣʔβू߹ʹରͯ͠ɺσϞάϥଐੑͷׂ߹ΛΔ͜ͱ͕Ͱ ͖Δͱ͢Δ • ͜ͷใΛͬͯϢʔβ୯ҐͰͷଐੑਪఆΛ͢Δ • Williams+, "Pleasing the advertising oracle: Probabilistic prediction from sampled, aggregated ground truth", AdKDD2014 ͷൃల
Toward Personalized Product Search for eCommerce Sites: A Case Study
in Yahoo! Taiwan • Y!ͷeίϚʔεαΠτʹ͓͚Δݕࡧ • ଟ͘ͷݕࡧΫΤϦҰൠతͩͬͨΓᐆດͰɺϢʔβେ ͳ݁Ռͷத͔ΒతͷͷΛ୳͞ͶͳΒͳ͍ • ςΩετใ͚ͩͰͷϚονϯάͰෆेͳͷͰɺϢʔ βͷڵຯʹԠͯ͡ύʔιφϥΠζͨ͠ϥϯΩϯάΛߦ͏
AdKDD & TargetAd 2017
AdKDD & TargetAd 2017 https://adkdd-targetad.wixsite.com/adkddtargetad2017/accepted-papers
AdKDD & TargetAd 2017 https://adkdd-targetad.wixsite.com/adkddtargetad2017/accepted-papers
AdKDD & TargetAd 2017 https://adkdd-targetad.wixsite.com/adkddtargetad2017/accepted-papers
Attribution Modeling Increases Efficiency of Bidding in Display Advertising •
Criteo • ΞτϦϏϡʔγϣϯϞσϧΛͬͨbidઓུ • 2nd price auctionʹ͓͚Δ࠷దઓུͦͷϦΫΤετͷՁ Λೖࡳֹͱ͢Δ͜ͱ͕ͩɺਖ਼֬ͳՁΛٻΊΔͨΊʹ ΞτϦϏϡʔγϣϯϞσϧΛߟྀ͢Δඞཁ͕͋Δ
Blacklisting the Blacklist in Online Advertising • Dstillery • RTBʹ͓͍ͯpublisherଆ͕ϒϥοΫϦετΛ͍࣋ͬͯͯ
ಛఆͷࠂΛ͘͜͡ͱ͕͋Δ • ϒϥοΫϦετͷ༰ඇެ։ • ແବͳbidΛආ͚ΔͨΊϒϥοΫϦετͷ༰Λਪఆ͢Δ ػೳΛ࡞ͬͨ • γεςϜෛՙ͕ݮΓɺউ্͕ͨ͠
Anti-Ad Blocking Strategy: Measuring its True Impact • Adobe Research
• AdBlockΛݕग़ͯ͠ϢʔβʹϝοηʔδΛग़͢ઓུ͕͋Δ (՝ۚίʔεͷ༠ಋͳͲ) • ͜ͷઓུͲͷఔ༗ޮͳͷ͔ௐΔͨΊͷ౷ܭతख๏ ΛఏҊ • ͳΜΒ͔ͷࣄʹΑΓɺී௨ʹA/Bςετ͢ΔΘ͚ʹ͍ ͔ͳ͍Β͍͠
MM2RTB: Bringing Multimedia Metrics to Real-Time Bidding • ࠂͷ࣭ΛධՁ͢ΔͨΊͷmultimedia metricsͱ͍͏ͷ͕
͋Δ • contextual relevance, visual saliency, ad memorability • ϖʔδʹෳͷࠂεϩοτ͕͋Δͱ͖ɺmultimedia metricsΛߟྀͯ͠ࠂͷΈ߹ΘͤΛબ͢Δख๏ͷఏ Ҋ
Data-Driven Reserve Prices for Social Advertising Auctions at LinkedIn •
ηΧϯυϓϥΠεΦʔΫγϣϯʹ͓͚Δ࠷దͳϦβʔϒϓ ϥΠεΛٻΊΔํ๏Λ2छྨ(Ϣʔβ/ηάϝϯτϨϕϧ)ఏ Ҋ • ࣮γεςϜʹ࣮ͯ͠ޮՌΛݕূͨ͠
Optimal Reserve Price for Online Ads Trading Based on Inventory
Identification • Alibaba+Yahoo • ͜Εreserve priceͷܾఆઓུʹؔ͢Δ
Ranking and Calibrating Click-Attributed Purchases in Performance Display Advertising •
click-attributionͰCV՝ۚϞσϧͷࠂ৴ • bidͷࡍʹҎԼͷखॱ͕ඞཁ • CV͞Ε͍͢ࠂͷީิΛྻڍ(ΞτϦϏϡʔγϣϯͷ ੍ͰɺΫϦοΫߴ͍ඞཁ͕͋Δ) • CVʹԠͯ͡ೖࡳֹۚΛܾఆ(ਖ਼֬ͳCVͷਪఆࠔ ) • ϥϯΩϯά+ΩϟϦϒϨʔγϣϯʹΑͬͯ͜ͷΛղ͘
Cost-sensitive Learning for Utility Optimization in Online Advertising Auctions •
CTR/CVR༧ଌʹɺhighly non-uniform misprediction cost͕ଘࡏ͢Δ • UtilityͷΑ͏ͳࢦඪΛͬͯੑೳධՁ͢Δख๏͕ఏҊ͞Ε ͍ͯΔ • ֶश࣌ʹUtilityΛߟྀͯ͠࠷దԽ͍ͨ͠ • log lossʹॏΈΛ͚ͭΔ͜ͱͰੑೳվળ͢Δख๏ͷఏҊ
A Practical Framework of Conversion Rate Prediction for Online Display
Advertising • CVR༧ଌʹؔ͢Δ༷ʑͳख๏ͷఏҊ • Over predictionͷରԠ • delayed feedbackΛߟֶྀͨ͠श • ΞτϦϏϡʔγϣϯϞσϧΛߟྀͨ͠ೖࡳֹิਖ਼
An Ensemble-based Approach to Click- Through Rate Prediction for Promoted
Listings at Etsy • Etsyͷlisting adͰΘΕ͍ͯΔCTRਪఆγεςϜͷհ
Profit Maximization for Online Advertising Demand-Side Platform • CPC/CPAϞσϧʹ͓͍ͯɺDSPͷརӹΛ࠷େԽ͍ͨ͠ •
࠷దͳೖࡳઓུ(ͲͷࠂΛ͍͘ΒͰೖࡳ͢Δ͔)ʹ͍ͭͯ ߟ • Ωϟϯϖʔϯ༧ࢉͱϖʔγϯάɺλʔήςΟϯάɺimpڙ څྔͷ੍͕͋Δ • ࣮༻తʹղ͚ΔϞσϧΛఏҊ
Deep & Cross Network for Ad Click Predictions • Google
• Deep & Cross networkͱ͍͏DLͷϞσϧΛఏҊ • ަޓ࡞༻Λཅʹѻ͑Δ • CTRਪఆʹར༻ͯ͠ߴੑೳͩͬͨ
AdKDD & TargetAd 2018
AdKDD & TargetAd 2018 https://adkdd-targetad.wixsite.com/2018/accepted-papers
AdKDD & TargetAd 2018 https://adkdd-targetad.wixsite.com/2018/accepted-papers
A Large Scale Benchmark for Uplift Modeling • Criteo •
Uplift modelingͷݕূʹ͑ΔେنσʔλΛެ։ͨ͠ • https://ailab.criteo.com/criteo-uplift-prediction-dataset/
Deep Density Networks and Uncertainty in Recommender Systems • Taboola(ࠂϓϥοτϑΥʔϜΛͬͯΔձࣾ)
• Deep Density Networksͱ͍͏ϞσϧͷఏҊ • content based+ڠௐϑΟϧλϦϯάͷϋΠϒϦου • ༧ଌͷෆ࣮֬ੑΛදݱͰ͖Δ • ε-greedyͱUCBΛΈ߹ΘͤͨΑ͏ͳϩδοΫͰ exploration/exploitation͢Δ
Deep Neural Net with Attention for Multi-channel Multi-touch Attribution •
DNNΛͬͨMulti-touch attributionϞσϧͷఏҊ
Deep Policy Optimization for E-commerce Sponsored Search Ranking Strategy •
2018͔ΒDNNΛͬͨൃදཱ͕ͪ·͢Ͷ • εϙϯαʔυαʔνͷϥϯΩϯάΛਂڧԽֶशͰ ղ͘
Designing Experiments to Measure Incrementality on Facebook • Facebookʹ͓͚Δincrementalityܭଌख๏ͷղઆ •
upliftͱincrementalityͷҧ͍͕Ṗ • ୯ͳΔA/BςετΑΓॊೈͳ࣮ݧ͕Մೳ
Dynamic Hierarchical Empirical Bayes: A Predictive Model Applied to Online
Advertising • Adobe • εϙϯαʔυαʔνʹ͓͚ΔCTR/CVRਪఆϞσϧ • ֊ϕΠζʹ͓͍ͯɺσʔλʹԠͯ͡ಈతʹ֊ߏΛܾ ఆ͢ΔΑ͏ͳϞσϧͷఏҊ
Forecasting Granular Audience Size for Online Advertising • ಛఆͷηάϝϯτʹࠂ৴͢Δͱ͖ɺࣄલʹΦʔσΟΤ ϯεͷαΠζ͕Γ͍ͨ
• Frequent Itemset Miningͱ͍͏ख๏ΛݩʹɺͦͷΑ͏ͳਪ ఆΛ͢Δख๏ΛఏҊ
Mini-Batch AUC Optimization • ֶश࣌ʹAUCΛ࠷దԽ͍͕ͨ͠ɺେنσʔληο τʹ͓͍͔ͯͬͨ͠ • ϛχόονΛ͏͜ͱͰߴͳֶशΛՄೳͱ͢Δख๏Λ ఏҊ
Optimal Bidding, Allocation and Budget Spending for a Demand Side
Platform Under Many Auction Types • ৽͍͠ೖࡳઓུϩδοΫͷఏҊ • 1st/2nd price auctionʹରԠɺ༧ࢉ੍ΫϥΠΞϯτ͝ ͱͷرΛߟྀͰ͖Δ
AdKDD 2019
AdKDD 2019 https://www.adkdd.org/2019-papers-and-talks
AdKDD 2019 https://www.adkdd.org/2019-papers-and-talks
AdKDD 2019 https://www.adkdd.org/2019-papers-and-talks
Time-Aware Prospective Modeling of Users for Online Display Advertising •
Yahoo • ࣌ܥྻΛߟྀͨ͠ϢʔβߦಈϞσϦϯάʹΑΓɺϢʔβͷ ҙਤΛߟྀͨ͠ਪఆΛߦ͏DNNϞσϧͷఏҊ
Graphing Crumbling Cookies • ΫϩεσόΠετϥοΩϯάΛ͍͕ͨ͠ɺۙcookieͷ ༻੍ݶ͕ݫ͘͠ͳ͍ͬͯΔ(ITP) • Browser fingerprintingͳͲͷΘΔ͍ٕज़ΛΘͣ͜ͷঢ়گ ʹରԠ͢ΔͨΊͷख๏ΛఏҊ
Causally Driven Incremental Multi Touch Attribution Using a Recurrent Neural
Network • JD.com(ژ౦): தࠃͷڊେECاۀ • multi-touch attributionΛRNNͰϞσϦϯά͢Δख๏Λఏ Ҋ • ͜ͷϞσϧ࣮ࡍΘΕ͍ͯΔΒ͍͠
Combinatorial Keyword Recommendations for Sponsored Search with Deep Reinforcement Learning
• Baidu • ਂڧԽֶशͰϨίϝϯμ࡞Δͭ
Feasible Bidding Strategies through Pure Exploration Bandits • ೖࡳઓུͷީิ͕େྔʹ͋Γɺ͍͍ͭΛબͼ͍ͨ •
ύϥϝλͷΈ߹ΘͤͰ͔ͳΓީิ͕ଟ͍(~100)ͨΊɺී ௨ʹόϯσΟοτΞϧΰϦζϜΛ͏ͷඇޮ • ʮͦͦ͜͜Αͦ͞͏ʯͳީิΛߴʹൃݟ͢ΔͨΊͷख๏ ΛఏҊ
In-app Purchase Prediction Using Bayesian Personalized DwellDay Ranking • ژେ+CyberAgent
• ΞϓϦ՝ۚͦ͠͏ͳϢʔβΛਪఆ͢ΔλεΫ • Bayesian personalized rankingΛݩʹͨ͠ख๏ΛఏҊ
Learning from Multi-User Activity Trails for B2B Ad Targeting •
Yahoo • B2Bʹ͓͚Δͷߪೖϓϩηεɺෳͷਓ͕ؒؔΘͬ ͨෳࡶͳʹͳΔ • ͜ͷΑ͏ͳϓϩηεʹରԠͨ͠ࠂͷ৴ઓུ͕ඞཁ • ಉ͡৫ʹ͍ΔΦʔσΟΤϯεΛਪఆɺͦΕΒͷߦಈΛ૯ ߹ͯ͠CV༧ଌ͢ΔϞσϧΛఏҊ
Modeling Advertiser Bidding Behaviors in Google Sponsored Search with a
Mirror Attention Mechanism • SSPଆ͔ΒೖࡳऀͷߦಈΛϞσϦϯά͢Δ • ৽ػೳΛϦϦʔεͨ͠ࡍɺͦΕ͕ظతʹࠂओʹͲͷΑ ͏ͳӨڹΛٴ΅͔͢Γ͍ͨ…… ͱ͍͏ͷ͕Ϟνϕʔ γϣϯΒ͍͠
Optimal bidding: a dual approach • ৽͍͠ೖࡳઓུͷఏҊ
·ͱΊ • ࠂܥจ͕ͨ͘͞Μ͋Δ͜ͱ͕Θ͔Γ·ͨ͠ • ͍͔͕Ͱ͔ͨ͠? • དྷ಄͘Β͍ʹࠂܥจಡॻձΛΓ͍ͨͷͰɺڵຯ͋ Δਓ͓͕͚͍ͩ͘͞