Upgrade to Pro — share decks privately, control downloads, hide ads and more …

TMLS 2020 Recommender System Workshop

Jill Cates
November 16, 2020

TMLS 2020 Recommender System Workshop

An introductory workshop on how to build a recommender system using Python.

Jill Cates

November 16, 2020
Tweet

More Decks by Jill Cates

Other Decks in Technology

Transcript

  1. Customers who bought this item also bought… Amazon Similar items

    based on your browsing history… Based on your reading history… Because you watched Narcos… “Finding your best match” Jobs recommended for you… Net ix Linkedin Online Shopping Medium OkCupid
  2. “A physical store cannot be recon gured on the y

    to cater to each customer based on his or her particular interests.” - Chris Anderson
  3. 6 jam samples 24 jam samples vs. 40% of customers

    stopped at the limited-choice booth 60% of customers stopped at the extensive-choice booth Initial Interest The Tasting Booth Experiment
  4. 6 jam samples 24 jam samples vs. 30% conversion rate

    3% conversion rate Subsequent Purchase The Tasting Booth Experiment
  5. What is a Recommender System? An application of machine learning

    predicting future behaviour explicit feedback implicit feedback Recommender System User preferences Recommendations
  6. What is a Recommender System? An application of machine learning

    predicting future behaviour explicit feedback implicit feedback Recommender System User preferences Recommendations Collaborative ltering Content-based ltering item user John Jim Anne Liz Erica
  7. Collaborative Filtering “Similar people like similar things” User-item (“utility”) matrix

    Users Movies Arnold Peter Susan Valerie Jean Walter Charlie 5 4 3 4 1 2 3 1 5 2 2 4 1 4 5 5 4 1 2 4 5 4 2 1 1 5 5 3 5 4 2 4 3
  8. Collaborative Filtering “Similar people like similar things” User-item (“utility”) matrix

    Users Movies Arnold Peter Susan Valerie Jean Walter Charlie 5 4 3 4 1 2 3 1 5 2 2 4 1 4 5 5 4 1 2 4 5 4 2 1 1 5 5 3 5 4 2 4 3
  9. Collaborative Filtering “Similar people like similar things” User-item (“utility”) matrix

    Users Movies Arnold Peter Susan Valerie Jean Walter Charlie 5 4 3 4 1 2 3 1 5 2 2 4 1 4 5 5 4 1 2 4 5 4 2 1 1 5 5 3 5 4 2 4 3
  10. Collaborative Filtering “Similar people like similar things” User-item (“utility”) matrix

    Users Movies Arnold Peter Susan Valerie Jean Walter Charlie 5 4 3 4 1 2 3 1 5 2 2 4 1 4 5 5 4 1 2 4 5 4 2 1 1 5 5 3 5 4 2 4 3
  11. Users Movies 5 3 4 1 2 3 1 2

    2 4 1 5 5 4 1 2 4 5 4 2 1 1 5 3 5 4 2 4 3 “ A system cannot draw any inferences for users or items about which it has not yet gathered sufficient information.” Cold Start Problem ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
  12. Content-Based Filtering User and Item Features Users Features Arnold Peter

    Susan Valerie Jean Walter Charlie Movies Features 45 32 20 59 47 17 36 M M M F M F F CA US US US FR CA CA EN EN EN FR EN EN CA Y Y N Y N Y N N Y Y N Y N N Y Y N Y Y Y N age gender country language 96 horror? family? comedy? 97 07 10 19 16 03 EN EN EN EN EN EN EN N N N N N N Y N Y Y Y Y N N N N N Y Y Y N Y Y Y N N Y N N N N N N N N horror family comedy drama thriller language year of release
  13. Environment Set-up Option 1: Run notebook locally Option 2: Run

    notebook in the cloud • Need to install Jupyter Notebook • Google Colab is a Jupyter notebook environment that runs in the cloud • Minimal set-up required (need a Gmail account) • Supports free GPU
  14. MovieLens Dataset • Created by GroupLens research group at the

    University of Minnesota • Titanic dataset of recommenders