Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SRE Lounge#3 UZABASE
Search
tanan
May 18, 2018
Technology
2
3.9k
SRE Lounge#3 UZABASE
SPEEDAでのProduction Kubernetes運用についてSREの取り組みを話しました。
tanan
May 18, 2018
Tweet
Share
More Decks by tanan
See All by tanan
SRE Lounge#2 UZABASE
toshianan
0
2.5k
Other Decks in Technology
See All in Technology
LinkX_GitHubを基点にした_AI時代のプロジェクトマネジメント.pdf
iotcomjpadmin
0
160
Liquid Glass革新とSwiftUI/UIKit進化
fumiyasac0921
0
140
2025/6/21 日本学術会議公開シンポジウム発表資料
keisuke198619
2
470
BigQuery Remote FunctionでLooker Studioをインタラクティブ化
cuebic9bic
2
230
VCpp Link and Library - C++ breaktime 2025 Summer
harukasao
0
220
知識を整理して未来を作る 〜SKDとAI協業への助走〜
yosh1995
0
140
【TiDB GAME DAY 2025】Shadowverse: Worlds Beyond にみる TiDB 活用術
cygames
0
860
“社内”だけで完結していた私が、AWS Community Builder になるまで
nagisa53
1
200
菸酒生在 LINE Taiwan 的後端雙刀流
line_developers_tw
PRO
0
1.1k
Абьюзим random_bytes(). Фёдор Кулаков, разработчик Lamoda Tech
lamodatech
0
270
Oracle Cloud Infrastructure:2025年6月度サービス・アップデート
oracle4engineer
PRO
1
140
エンジニア向け技術スタック情報
kauche
0
110
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
700
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Code Review Best Practice
trishagee
68
18k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.9k
The Cost Of JavaScript in 2023
addyosmani
51
8.4k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
920
Agile that works and the tools we love
rasmusluckow
329
21k
Optimizing for Happiness
mojombo
379
70k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Transcript
UZABASE SRE
• 阿南 肇史 • 2016年7月 UZABASE 入社 – 前職はSIerでアドテク系Infra Enginner
• UZABASE SRE Team 所属 – Infra Team => SRE Team (2017/07〜現在) 自己紹介
Mission 経済情報で、世界をかえる Business Intelligence to Change Your World 私たちは、世界中で愛される経済情報インフラをつくります。 あらゆる経済情報を人とテクノロジーの力で整理・分析・創出し、
ビジネスパーソンの生産性を高め、創造性を解放します。 私たちは経済情報を通じて世界中の意思決定を支え、世界をかえます。
Our Services B2Bマーケティングエンジン ソーシャル経済ニュース 企業・業界情報プラットフォーム 日本最大級のベンチャーデータベース 2009年 2008年 創業 2014年
2016年 2017年
• ビジネスパーソンの情報収集・分析における課 題を解決する最先端のプラットフォーム • 世界中の企業情報、業界レポート、市場デー タ、ニュース、統計、M&Aなどあらゆるビジネ ス情報をカバー https://jp.ub-speeda.com SPEEDAとは?
• SPEEDA ◦ インフラ+ソフトウェアで新機能開発以外を担当 ▪ インフラの構築運用 ▪ サービス・ジョブの運用 ▪ プロダクト改善、本番バグ対応、管理ツール開発
• 社内 ◦ オフィスネットワーク構築運用 ◦ 社内システム・PC・各種アカウント管理 ◦ コーポレートサイト、各サービスのLPサイトの構築運用 SREの業務範囲
Kubernetes運用における 開発チームとSREの関わり方 本日のテーマ
1. Backgrounds 2. k8s Architecture 3. Deployment 4. Logging 5.
Monitoring Table of Contents
Version:1.0 LB Huge Monolithic App File Server
Version:1.0 LB Huge Monolithic App File Server ・小改修でも全体に影響 ・機能追加も大がかり ・開発スピードが遅い
・デプロイが遅い ・増大し続けるヒープ ・頻繁なGC ・サーバ増設のコスト
Version:2.0 LB Huge Monolithic App File Server Int LB Microservice
with VMs
Version:2.0 LB Huge Monolithic App File Server Int LB Microservice
with VMs ・Microservice化 ・機能別に開発可能 ・ インフラ依頼増加 (開発スピードが上がらない) ・多数のVM構築 ・リソース効率悪い ・機能別にエンド ポイント(LB)準備 ・運用コスト増加 ・ヒープ増加が緩やかに
Version:3.0 LB Huge Monolithic App File Server Microservice with k8s
Ingress
Product Development Team Site Reliability Engineering Team CI / CDまで開発チームで完結できる世界を作る
• アプリケーション開発 • テスト • コンテナイメージ作成 • デプロイ • 監視用エンドポイント作成 • Logging • Cluster全体の設定 • Nodeメンテナンス • Logging • Monitoring • Security • Kubernetes外のDataStore構築
1. Backgrounds 2. k8s Architecture 3. Deployment 4. Logging 5.
Monitoring Table of Contents
Rancher Server Rancher Agent ・Rancher Dashboard ・Cluster追加 / 削除 ・ノード追加
/ 削除 ・Audit Logging ・Security Kubernetes Cluster rancher/agent rancher/agent rancher/agent rancher/agent Rancher Ingress service A : 8080 service B : 8080 Namespace A Namespace B external LB k8s Architecture
凡例 ホスト毎でのコンテナ配備状況 台で稼働 全台で稼働 全台で稼働 スタック
1. Backgrounds 2. k8s Architecture 3. Deployment 4. Logging 5.
Monitoring Table of Contents
Blue/Greenを バランサで切替 開発k8sに e2eテスト環境をデ プロイ 自動テストを実行 本番k8sの Blue環境にデプロイ kubectl +
Shell Script kubectl + Shell Script
Rancher Ingress external LB Port: 10080 Namespace: foo-green Port: 11080
Namespace: foo-blue Aerospike Live 同じDatasourceを利用して blue環境でテスト Green環境で稼働 Blue/Green Deployment
Rancher Ingress external LB Port: 10080 Namespace: foo-green Port: 11080
Namespace: foo-blue Aerospike Live Blue環境へ切替 バランサー操作含め Developmentチームが 自由にデプロイできる状態に Blue/Green Deployment
1. Backgrounds 2. k8s Architecture 3. Deployment 4. Logging 5.
Monitoring Table of Contents
• app-containerはログを標準(エラー)出力 • 各ノードにログファイルが出力 • logging-agentがログファイルをtail • Logging Backendへ送信 •
アーキテクチャ詳細は下記 https://kubernetes.io/docs/concepts/cluster-admi nistration/logging/ Logging Cluster-level Logging architecture
Logging SPEEDA Logging Architecture BigQuery • app-containerはログを標準(エラー)出力 – JSON形式で統一する •
namespaceごとにfluentdをdaemonsetで稼働 – プロジェクトごとに権限を分けることが可能 • BackendはBigQuery – table / schemaは自動生成
Logging 【Containerで標準出力(JSON形式)】 【Node上のファイル(ネストした JSON形式)】 各Nodeの /var/log/containers/[pod_name]-[namespace]-[container_name]-[container_id].log に出力
fluent-plugin-kubernetes_metadata_filter "log" カラムの内容を parseして取り出す 開発チーム主導で自由に ログを出力して アップロードする
1. Backgrounds 2. k8s Architecture 3. Deployment 4. Logging 5.
Monitoring Table of Contents
Monitoring ・監視基盤としてPrometheus + Grafana を採用 ・k8sにNode-exporter、Prometheusのコンテナを稼働 ・k8sの各ノードで収集 ・データ保存期間は24時間 ・k8s外のPrometheusからfederationで収集 ・GrafanaでVisualize
・詳細は弊社tech blogを参照ください! http://tech.uzabase.com/entry/2018/03/14/200512
Prometheus Monitoring k8s cluster App pods node node node App
pods App pods Node Exporter federation datasource Prometheus Alertmanager $ kubectl describe deployment prometheus --namespace=metrics Args: --config.file=/mnt/etc/prometheus.yml --storage.tsdb.retention=24h --web.external-url=$(EXTERNAL_URL)/prometheus Grafana
• 開発チームでデプロイまで完結する • SREはクラスター全体の設計に集中 • 権限を移譲することにより各チームが自律して プロジェクトに取り組める環境を作る まとめ
Any questions? Thank you for listening!