Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
Search
toshitanian
February 15, 2018
Technology
1
620
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
toshitanian
February 15, 2018
Tweet
Share
More Decks by toshitanian
See All by toshitanian
エッジデバイスでディープラーニング! AWSを活用したエッジデバイスマネジメントの紹介/ aws-edge-device-deeplearning
toshitanian
1
2.3k
nvidia-jetson-x-deep-learning
toshitanian
0
1.6k
Amazon Kinesis Video Streams × Deep Learning
toshitanian
1
7.1k
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
toshitanian
0
1.4k
Docker入門 - Ruby on RailsアプリケーションをDockerで動かしてみる - / Introduction to Docker
toshitanian
7
3k
Other Decks in Technology
See All in Technology
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
330
使いにくいの壁を突破する
sansantech
PRO
1
110
Agile Leadership Summit Keynote 2026
m_seki
1
350
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.5k
GSIが複数キー対応したことで、俺達はいったい何が嬉しいのか?
smt7174
3
140
Meshy Proプラン課金した
henjin0
0
240
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
130
入社1ヶ月でデータパイプライン講座を作った話
waiwai2111
1
230
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
120
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
42k
サイボウズ 開発本部採用ピッチ / Cybozu Engineer Recruit
cybozuinsideout
PRO
10
73k
Featured
See All Featured
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
280
A Soul's Torment
seathinner
5
2.2k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
The Invisible Side of Design
smashingmag
302
51k
Making Projects Easy
brettharned
120
6.6k
How to build a perfect <img>
jonoalderson
1
4.9k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
88
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
170
Being A Developer After 40
akosma
91
590k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Transcript
機械学習プラットフォーム でのDocker利用事例 スタートアップなエンジニアLT! 〜スタートアップはどんな技術を駆使して開発を行っているのか?〜 ABEJA, Inc Toshiya Kawasaki 15-E-7 #devsumiE
2018/02/15
河崎 敏弥 @toshitanian ABEJA, Inc. Platform Division Lead Engineer •創業1年の時にABEJAに参画
•バックエンドエンジニア •クラウド上でシステム構築 •IoTデバイスとのシステム連携 •コンテナ •エッジコンピューティング
None
機械学習のプロセス 4 入力データ 学習 推論 教師データ モデル モデル 入力 入力
学習 推論結果 推論 デプロイ
機械学習のプロセス + 周辺システム 5 入力データ 学習 推論 教師データ モデル モデル
入力 入力 学習 推論結果 推論 デプロイ データ蓄積/データセット管理/ジョブの管理 /コードの管理/ログ・メトリクス/デバイス管理/etc… 周辺システム
•学習フェーズ •推論フェーズ •クラウドサーバでの推論 •エッジデバイス上での推論 •マイクロサービス Dockerの使い所 6
•特徴 •ジョブの起動時間が長い(数時間〜数週間) •GPUを使って学習する •現在の構成 •Kubernetesのクラスタを作っている •GPUのノードをたくさんぶら下げている •nvidia-docker2経由でコンテナがGPUを使える 学習フェーズ 7
•特徴 •アプリケーションによってCPUで処理するか、GPUで処理するか変わる •HTTPでモデルをサーブする・バッチ処理でデータを処理するの大きく2種類の使い方 •現状の構成 •モデルの利用形式によりECSとAWS Batchを使い分けている •HTTPでモデルをサーブする場合: ECS •クラスタを分けてCPU/GPUノードへのスケジュールをしている •バッジ処理で利用する場合:
AWS Batch •全てスポットインスタンス 推論フェーズ - クラウドサーバ上 - 8
•特徴 •リソース制約がある(CPU/メモリ/etc…) •ネットワーク制約がある。 •常時インターネット接続があるとは限らない •NAT超え •現状の構成 •AWS IoTをベースに、デバイスへDockerコンテナをデプロイ •ARMアーキテクチャ向けのDocker Imageを利用している
•基本的にDockerを動かす事によるオーバーヘッドは無い 推論フェーズ - エッジデバイス上 - 9
•特徴 •学習⇔推論プロセスをユーザが運用するための周辺システム •データ管理/ジョブ管理/デプロイ管理/コード管理/デバイス管理/etc… •現状の構成 •基本的に全てのAPIサーバはDockerでデプロイ •ECSのひとつのクラスタで全てのAPIサーバを同居させている •ちなみに、マイクロサービスの前段に独自のAPIゲートウェイ マイクロサービス 10
•基本的に全てのアプリケーションはDockerコンテナとして動かしている •AWSのサービスやKubernetesを用途に合わせて使い分けている •7分では話しきれないので、詳細は別の機会で… ! まとめ 11 "