Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
Search
toshitanian
February 15, 2018
Technology
1
520
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
toshitanian
February 15, 2018
Tweet
Share
More Decks by toshitanian
See All by toshitanian
エッジデバイスでディープラーニング! AWSを活用したエッジデバイスマネジメントの紹介/ aws-edge-device-deeplearning
toshitanian
1
2.1k
nvidia-jetson-x-deep-learning
toshitanian
0
1.5k
Amazon Kinesis Video Streams × Deep Learning
toshitanian
1
6.8k
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
toshitanian
0
1.3k
Docker入門 - Ruby on RailsアプリケーションをDockerで動かしてみる - / Introduction to Docker
toshitanian
7
2.8k
Other Decks in Technology
See All in Technology
PostgreSQL Conference Japan 2024 A4 Comparison of column-oriented access methods
nori_shinoda
0
160
『GRANBLUE FANTASY: Relink』続・最高の「没入感」を実現するカットシーン制作手法とそれを支える技術
cygames
0
100
2024年のModern Data Stackを振り返ろう~分野別の目玉アップデート情報まとめ~
sagara
0
510
ソフトウェアエンジニアとしてキャリアの螺旋を駆け上がる方法 - 経験と出会いが人生を変える / Career-Anchor-Drive
soudai
13
2.9k
Kubernetes環境のオブザーバビリティの次の一歩をOpenTelemetryで実現すると何がどうなるの? - CloudNative Days Winter 2024
katzchang
0
110
TimeTreeが経た3つの転換点 ー プロダクト成長過程でその時、その瞬間、何を考えてたか
ysmtysts
1
4k
論理レプリケーションを使ったDB統合
kkato1
0
340
運用者が見るべき、ダッシュボードと問題の把握
masaaki_k
0
110
同一クラスタ上でのFluxCDとArgoCDのリソース最適化の話
kumorn5s
0
160
GitHub Actions의 다양한 기능 활용하기 - GitHub Universe '24 Recap
outsider
0
560
DevOps視点でAWS re:invent2024の新サービス・アプデを振り返ってみた
oshanqq
0
120
職能を超えたモブプログラミングが品質に与えた良い影響
tonionagauzzi
2
300
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
53
5k
For a Future-Friendly Web
brad_frost
175
9.4k
Docker and Python
trallard
41
3.1k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
How STYLIGHT went responsive
nonsquared
95
5.2k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
A better future with KSS
kneath
238
17k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Optimising Largest Contentful Paint
csswizardry
33
3k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
247
1.3M
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Transcript
機械学習プラットフォーム でのDocker利用事例 スタートアップなエンジニアLT! 〜スタートアップはどんな技術を駆使して開発を行っているのか?〜 ABEJA, Inc Toshiya Kawasaki 15-E-7 #devsumiE
2018/02/15
河崎 敏弥 @toshitanian ABEJA, Inc. Platform Division Lead Engineer •創業1年の時にABEJAに参画
•バックエンドエンジニア •クラウド上でシステム構築 •IoTデバイスとのシステム連携 •コンテナ •エッジコンピューティング
None
機械学習のプロセス 4 入力データ 学習 推論 教師データ モデル モデル 入力 入力
学習 推論結果 推論 デプロイ
機械学習のプロセス + 周辺システム 5 入力データ 学習 推論 教師データ モデル モデル
入力 入力 学習 推論結果 推論 デプロイ データ蓄積/データセット管理/ジョブの管理 /コードの管理/ログ・メトリクス/デバイス管理/etc… 周辺システム
•学習フェーズ •推論フェーズ •クラウドサーバでの推論 •エッジデバイス上での推論 •マイクロサービス Dockerの使い所 6
•特徴 •ジョブの起動時間が長い(数時間〜数週間) •GPUを使って学習する •現在の構成 •Kubernetesのクラスタを作っている •GPUのノードをたくさんぶら下げている •nvidia-docker2経由でコンテナがGPUを使える 学習フェーズ 7
•特徴 •アプリケーションによってCPUで処理するか、GPUで処理するか変わる •HTTPでモデルをサーブする・バッチ処理でデータを処理するの大きく2種類の使い方 •現状の構成 •モデルの利用形式によりECSとAWS Batchを使い分けている •HTTPでモデルをサーブする場合: ECS •クラスタを分けてCPU/GPUノードへのスケジュールをしている •バッジ処理で利用する場合:
AWS Batch •全てスポットインスタンス 推論フェーズ - クラウドサーバ上 - 8
•特徴 •リソース制約がある(CPU/メモリ/etc…) •ネットワーク制約がある。 •常時インターネット接続があるとは限らない •NAT超え •現状の構成 •AWS IoTをベースに、デバイスへDockerコンテナをデプロイ •ARMアーキテクチャ向けのDocker Imageを利用している
•基本的にDockerを動かす事によるオーバーヘッドは無い 推論フェーズ - エッジデバイス上 - 9
•特徴 •学習⇔推論プロセスをユーザが運用するための周辺システム •データ管理/ジョブ管理/デプロイ管理/コード管理/デバイス管理/etc… •現状の構成 •基本的に全てのAPIサーバはDockerでデプロイ •ECSのひとつのクラスタで全てのAPIサーバを同居させている •ちなみに、マイクロサービスの前段に独自のAPIゲートウェイ マイクロサービス 10
•基本的に全てのアプリケーションはDockerコンテナとして動かしている •AWSのサービスやKubernetesを用途に合わせて使い分けている •7分では話しきれないので、詳細は別の機会で… ! まとめ 11 "