Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
Search
toshitanian
February 15, 2018
Technology
1
600
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
toshitanian
February 15, 2018
Tweet
Share
More Decks by toshitanian
See All by toshitanian
エッジデバイスでディープラーニング! AWSを活用したエッジデバイスマネジメントの紹介/ aws-edge-device-deeplearning
toshitanian
1
2.3k
nvidia-jetson-x-deep-learning
toshitanian
0
1.6k
Amazon Kinesis Video Streams × Deep Learning
toshitanian
1
7.1k
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
toshitanian
0
1.4k
Docker入門 - Ruby on RailsアプリケーションをDockerで動かしてみる - / Introduction to Docker
toshitanian
7
3k
Other Decks in Technology
See All in Technology
MySQLのSpatial(GIS)機能をもっと充実させたい ~ MyNA望年会2025LT
sakaik
0
120
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
240
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
240
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
130
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
1
410
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
390
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
190
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
510
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
260
子育てで想像してなかった「見えないダメージ」 / Unforeseen "hidden burdens" of raising children.
pauli
2
330
ハッカソンから社内プロダクトへ AIエージェント ko☆shi 開発で学んだ4つの重要要素
leveragestech
0
210
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
120
Featured
See All Featured
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
260
Mobile First: as difficult as doing things right
swwweet
225
10k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.1k
Designing Powerful Visuals for Engaging Learning
tmiket
0
190
4 Signs Your Business is Dying
shpigford
186
22k
Done Done
chrislema
186
16k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Automating Front-end Workflow
addyosmani
1371
200k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
The agentic SEO stack - context over prompts
schlessera
0
560
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
31
[SF Ruby Conf 2025] Rails X
palkan
0
640
Transcript
機械学習プラットフォーム でのDocker利用事例 スタートアップなエンジニアLT! 〜スタートアップはどんな技術を駆使して開発を行っているのか?〜 ABEJA, Inc Toshiya Kawasaki 15-E-7 #devsumiE
2018/02/15
河崎 敏弥 @toshitanian ABEJA, Inc. Platform Division Lead Engineer •創業1年の時にABEJAに参画
•バックエンドエンジニア •クラウド上でシステム構築 •IoTデバイスとのシステム連携 •コンテナ •エッジコンピューティング
None
機械学習のプロセス 4 入力データ 学習 推論 教師データ モデル モデル 入力 入力
学習 推論結果 推論 デプロイ
機械学習のプロセス + 周辺システム 5 入力データ 学習 推論 教師データ モデル モデル
入力 入力 学習 推論結果 推論 デプロイ データ蓄積/データセット管理/ジョブの管理 /コードの管理/ログ・メトリクス/デバイス管理/etc… 周辺システム
•学習フェーズ •推論フェーズ •クラウドサーバでの推論 •エッジデバイス上での推論 •マイクロサービス Dockerの使い所 6
•特徴 •ジョブの起動時間が長い(数時間〜数週間) •GPUを使って学習する •現在の構成 •Kubernetesのクラスタを作っている •GPUのノードをたくさんぶら下げている •nvidia-docker2経由でコンテナがGPUを使える 学習フェーズ 7
•特徴 •アプリケーションによってCPUで処理するか、GPUで処理するか変わる •HTTPでモデルをサーブする・バッチ処理でデータを処理するの大きく2種類の使い方 •現状の構成 •モデルの利用形式によりECSとAWS Batchを使い分けている •HTTPでモデルをサーブする場合: ECS •クラスタを分けてCPU/GPUノードへのスケジュールをしている •バッジ処理で利用する場合:
AWS Batch •全てスポットインスタンス 推論フェーズ - クラウドサーバ上 - 8
•特徴 •リソース制約がある(CPU/メモリ/etc…) •ネットワーク制約がある。 •常時インターネット接続があるとは限らない •NAT超え •現状の構成 •AWS IoTをベースに、デバイスへDockerコンテナをデプロイ •ARMアーキテクチャ向けのDocker Imageを利用している
•基本的にDockerを動かす事によるオーバーヘッドは無い 推論フェーズ - エッジデバイス上 - 9
•特徴 •学習⇔推論プロセスをユーザが運用するための周辺システム •データ管理/ジョブ管理/デプロイ管理/コード管理/デバイス管理/etc… •現状の構成 •基本的に全てのAPIサーバはDockerでデプロイ •ECSのひとつのクラスタで全てのAPIサーバを同居させている •ちなみに、マイクロサービスの前段に独自のAPIゲートウェイ マイクロサービス 10
•基本的に全てのアプリケーションはDockerコンテナとして動かしている •AWSのサービスやKubernetesを用途に合わせて使い分けている •7分では話しきれないので、詳細は別の機会で… ! まとめ 11 "