Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
Search
toshitanian
February 15, 2018
Technology
1
580
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
toshitanian
February 15, 2018
Tweet
Share
More Decks by toshitanian
See All by toshitanian
エッジデバイスでディープラーニング! AWSを活用したエッジデバイスマネジメントの紹介/ aws-edge-device-deeplearning
toshitanian
1
2.2k
nvidia-jetson-x-deep-learning
toshitanian
0
1.6k
Amazon Kinesis Video Streams × Deep Learning
toshitanian
1
7k
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
toshitanian
0
1.3k
Docker入門 - Ruby on RailsアプリケーションをDockerで動かしてみる - / Introduction to Docker
toshitanian
7
2.9k
Other Decks in Technology
See All in Technology
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
2
880
Eval-Centric AI: Agent 開発におけるベストプラクティスの探求
asei
0
140
プロダクトエンジニアリングで開発の楽しさを拡張する話
barometrica
0
200
生成AIによるソフトウェア開発の収束地点 - Hack Fes 2025
vaaaaanquish
34
15k
僕たちが「開発しやすさ」を求め 模索し続けたアーキテクチャ #アーキテクチャ勉強会_findy
bengo4com
0
2.5k
テストを実行してSorbetのsigを書こう!
sansantech
PRO
1
120
Amazon Q と『音楽』-ゲーム音楽もAmazonQで作成してみた感想-
senseofunity129
0
160
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
23
5.7k
[kickflow]20250319_少人数チームでのAutify活用
otouhujej
0
110
AIエージェントを現場で使う / 2025.08.07 著者陣に聞く!現場で活用するためのAIエージェント実践入門(Findyランチセッション)
smiyawaki0820
7
1.2k
Amazon Inspector コードセキュリティで手軽に実現するシフトレフト
maimyyym
0
120
AIのグローバルトレンド 2025 / ai global trend 2025
kyonmm
PRO
1
150
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Automating Front-end Workflow
addyosmani
1370
200k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Designing for Performance
lara
610
69k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Typedesign – Prime Four
hannesfritz
42
2.8k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
機械学習プラットフォーム でのDocker利用事例 スタートアップなエンジニアLT! 〜スタートアップはどんな技術を駆使して開発を行っているのか?〜 ABEJA, Inc Toshiya Kawasaki 15-E-7 #devsumiE
2018/02/15
河崎 敏弥 @toshitanian ABEJA, Inc. Platform Division Lead Engineer •創業1年の時にABEJAに参画
•バックエンドエンジニア •クラウド上でシステム構築 •IoTデバイスとのシステム連携 •コンテナ •エッジコンピューティング
None
機械学習のプロセス 4 入力データ 学習 推論 教師データ モデル モデル 入力 入力
学習 推論結果 推論 デプロイ
機械学習のプロセス + 周辺システム 5 入力データ 学習 推論 教師データ モデル モデル
入力 入力 学習 推論結果 推論 デプロイ データ蓄積/データセット管理/ジョブの管理 /コードの管理/ログ・メトリクス/デバイス管理/etc… 周辺システム
•学習フェーズ •推論フェーズ •クラウドサーバでの推論 •エッジデバイス上での推論 •マイクロサービス Dockerの使い所 6
•特徴 •ジョブの起動時間が長い(数時間〜数週間) •GPUを使って学習する •現在の構成 •Kubernetesのクラスタを作っている •GPUのノードをたくさんぶら下げている •nvidia-docker2経由でコンテナがGPUを使える 学習フェーズ 7
•特徴 •アプリケーションによってCPUで処理するか、GPUで処理するか変わる •HTTPでモデルをサーブする・バッチ処理でデータを処理するの大きく2種類の使い方 •現状の構成 •モデルの利用形式によりECSとAWS Batchを使い分けている •HTTPでモデルをサーブする場合: ECS •クラスタを分けてCPU/GPUノードへのスケジュールをしている •バッジ処理で利用する場合:
AWS Batch •全てスポットインスタンス 推論フェーズ - クラウドサーバ上 - 8
•特徴 •リソース制約がある(CPU/メモリ/etc…) •ネットワーク制約がある。 •常時インターネット接続があるとは限らない •NAT超え •現状の構成 •AWS IoTをベースに、デバイスへDockerコンテナをデプロイ •ARMアーキテクチャ向けのDocker Imageを利用している
•基本的にDockerを動かす事によるオーバーヘッドは無い 推論フェーズ - エッジデバイス上 - 9
•特徴 •学習⇔推論プロセスをユーザが運用するための周辺システム •データ管理/ジョブ管理/デプロイ管理/コード管理/デバイス管理/etc… •現状の構成 •基本的に全てのAPIサーバはDockerでデプロイ •ECSのひとつのクラスタで全てのAPIサーバを同居させている •ちなみに、マイクロサービスの前段に独自のAPIゲートウェイ マイクロサービス 10
•基本的に全てのアプリケーションはDockerコンテナとして動かしている •AWSのサービスやKubernetesを用途に合わせて使い分けている •7分では話しきれないので、詳細は別の機会で… ! まとめ 11 "