Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
Search
toshitanian
February 15, 2018
Technology
1
590
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
toshitanian
February 15, 2018
Tweet
Share
More Decks by toshitanian
See All by toshitanian
エッジデバイスでディープラーニング! AWSを活用したエッジデバイスマネジメントの紹介/ aws-edge-device-deeplearning
toshitanian
1
2.2k
nvidia-jetson-x-deep-learning
toshitanian
0
1.6k
Amazon Kinesis Video Streams × Deep Learning
toshitanian
1
7.1k
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
toshitanian
0
1.3k
Docker入門 - Ruby on RailsアプリケーションをDockerで動かしてみる - / Introduction to Docker
toshitanian
7
3k
Other Decks in Technology
See All in Technology
猫でもわかるAmazon Q Developer CLI 解体新書
kentapapa
1
150
現場の壁を乗り越えて、 「計装注入」が拓く オブザーバビリティ / Beyond the Field Barriers: Instrumentation Injection and the Future of Observability
aoto
PRO
1
690
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
14
82k
生成AI時代のPythonセキュリティとガバナンス
abenben
0
150
ViteとTypeScriptのProject Referencesで 大規模モノレポのUIカタログのリリースサイクルを高速化する
shuta13
3
230
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
170
webpack依存からの脱却!快適フロントエンド開発をViteで実現する #vuefes
bengo4com
4
3.7k
re:Inventに行くまでにやっておきたいこと
nagisa53
0
730
SREのキャリアから経営に近づく - Enterprise Risk Managementを基に -
shonansurvivors
1
380
AI連携の新常識! 話題のMCPをはじめて学ぶ!
makoakiba
0
160
Open Table Format (OTF) が必要になった背景とその機能 (2025.10.28)
simosako
2
480
20251029_Cursor Meetup Tokyo #02_MK_「あなたのAI、私のシェル」 - プロンプトインジェクションによるエージェントのハイジャック
mk0721
PRO
5
2k
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
186
22k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
For a Future-Friendly Web
brad_frost
180
10k
The Pragmatic Product Professional
lauravandoore
36
7k
RailsConf 2023
tenderlove
30
1.3k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
YesSQL, Process and Tooling at Scale
rocio
173
15k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
How to Ace a Technical Interview
jacobian
280
24k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Transcript
機械学習プラットフォーム でのDocker利用事例 スタートアップなエンジニアLT! 〜スタートアップはどんな技術を駆使して開発を行っているのか?〜 ABEJA, Inc Toshiya Kawasaki 15-E-7 #devsumiE
2018/02/15
河崎 敏弥 @toshitanian ABEJA, Inc. Platform Division Lead Engineer •創業1年の時にABEJAに参画
•バックエンドエンジニア •クラウド上でシステム構築 •IoTデバイスとのシステム連携 •コンテナ •エッジコンピューティング
None
機械学習のプロセス 4 入力データ 学習 推論 教師データ モデル モデル 入力 入力
学習 推論結果 推論 デプロイ
機械学習のプロセス + 周辺システム 5 入力データ 学習 推論 教師データ モデル モデル
入力 入力 学習 推論結果 推論 デプロイ データ蓄積/データセット管理/ジョブの管理 /コードの管理/ログ・メトリクス/デバイス管理/etc… 周辺システム
•学習フェーズ •推論フェーズ •クラウドサーバでの推論 •エッジデバイス上での推論 •マイクロサービス Dockerの使い所 6
•特徴 •ジョブの起動時間が長い(数時間〜数週間) •GPUを使って学習する •現在の構成 •Kubernetesのクラスタを作っている •GPUのノードをたくさんぶら下げている •nvidia-docker2経由でコンテナがGPUを使える 学習フェーズ 7
•特徴 •アプリケーションによってCPUで処理するか、GPUで処理するか変わる •HTTPでモデルをサーブする・バッチ処理でデータを処理するの大きく2種類の使い方 •現状の構成 •モデルの利用形式によりECSとAWS Batchを使い分けている •HTTPでモデルをサーブする場合: ECS •クラスタを分けてCPU/GPUノードへのスケジュールをしている •バッジ処理で利用する場合:
AWS Batch •全てスポットインスタンス 推論フェーズ - クラウドサーバ上 - 8
•特徴 •リソース制約がある(CPU/メモリ/etc…) •ネットワーク制約がある。 •常時インターネット接続があるとは限らない •NAT超え •現状の構成 •AWS IoTをベースに、デバイスへDockerコンテナをデプロイ •ARMアーキテクチャ向けのDocker Imageを利用している
•基本的にDockerを動かす事によるオーバーヘッドは無い 推論フェーズ - エッジデバイス上 - 9
•特徴 •学習⇔推論プロセスをユーザが運用するための周辺システム •データ管理/ジョブ管理/デプロイ管理/コード管理/デバイス管理/etc… •現状の構成 •基本的に全てのAPIサーバはDockerでデプロイ •ECSのひとつのクラスタで全てのAPIサーバを同居させている •ちなみに、マイクロサービスの前段に独自のAPIゲートウェイ マイクロサービス 10
•基本的に全てのアプリケーションはDockerコンテナとして動かしている •AWSのサービスやKubernetesを用途に合わせて使い分けている •7分では話しきれないので、詳細は別の機会で… ! まとめ 11 "