Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
Search
toshitanian
January 27, 2017
Technology
0
1.4k
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
toshitanian
January 27, 2017
Tweet
Share
More Decks by toshitanian
See All by toshitanian
エッジデバイスでディープラーニング! AWSを活用したエッジデバイスマネジメントの紹介/ aws-edge-device-deeplearning
toshitanian
1
2.3k
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
toshitanian
1
610
nvidia-jetson-x-deep-learning
toshitanian
0
1.6k
Amazon Kinesis Video Streams × Deep Learning
toshitanian
1
7.1k
Docker入門 - Ruby on RailsアプリケーションをDockerで動かしてみる - / Introduction to Docker
toshitanian
7
3k
Other Decks in Technology
See All in Technology
[Data & AI Summit '25 Fall] AIでデータ活用を進化させる!Google Cloudで作るデータ活用の未来
kirimaru
0
4.2k
「リリースファースト」の実感を届けるには 〜停滞するチームに変化を起こすアプローチ〜 #RSGT2026
kintotechdev
0
280
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
14
4.8k
複雑さを受け入れるか、拒むか? - 事業成長とともに育ったモノリスを前に私が考えたこと #RSGT2026
murabayashi
0
590
コールドスタンバイ構成でCDは可能か
hiramax
0
130
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
130
AWS re:Inventre:cap ~AmazonNova 2 Omniのワークショップを体験してきた~
nrinetcom
PRO
0
120
AIエージェントを5分で一気におさらい!AIエージェント「構築」元年に備えよう
yakumo
1
130
Agent Skillsがハーネスの垣根を超える日
gotalab555
7
5k
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
310
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
170
Featured
See All Featured
Claude Code のすすめ
schroneko
67
210k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
39
The Mindset for Success: Future Career Progression
greggifford
PRO
0
200
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
Building an army of robots
kneath
306
46k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
89
Ethics towards AI in product and experience design
skipperchong
1
150
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
260
Technical Leadership for Architectural Decision Making
baasie
0
200
Context Engineering - Making Every Token Count
addyosmani
9
570
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
360
Unsuck your backbone
ammeep
671
58k
Transcript
ABEJA Innovation Meetup #ABEJAmeetup 2017/01/26 ABEJA, Inc. 河崎 敏弥
• MachineLearning/DeepLearningを使った動画解析エンジン • 実行する上で課題になる事 • ABEJAでのアプローチ 今日話す事 2
自己紹介
河崎 敏弥 @toshitanian ABEJA, Inc. IoT Analytics Division Product Owner
• 創業1年の時にABEJAに参画 • バックエンドエンジニア • クラウド上でシステム構築 • IoTデバイスとのシステム連携 • ここ2年はコンテナ推し
社名# 株式会社ABEJA# 設立# 2012年9月10日# 住所# 東京都港区虎ノ門4-1-20田中山ビル10F# 事業内容# ディープラーニングを活用した# 産業構造変革のサポート#
ABEJA Platform Ecosystem "
Unstructured Data Structured Data Analytics Engine Distributed Deep Learning Unstructured
Data ↓ Structured Data API ABEJA Platform
Video Analytics with Deep Learning
Video Analytics with Deeplearning 9 動画 解析結果
10 動画 解析結果
11
12 ? ? ? ? ? ? ? ? ?
? ? ?
困った… 13
• 大量の計算リソースの管理 • 大量のデータを処理 • スケール可能な解析インフラ • 効率の良い解析タスクの分散方法 • 利用リソースはアプリケーション依存.
CPU?GPU?占有コア数・メモリ量 • アプリケーション管理 • 解析アプリに必要な要件は? • 管理する解析アプリは増加の一途(研究開発によってできる事は増える) ML/DLの実行プラットフォームが考慮すべき事 14
ABEJAでのアプローチ
コンテナ
• Elasticな実行インフラ • 計算リソースが足りなければ勝手に増える • 解析タスクの分散はコンテナのスケジューラにお任せ • クラスタのどこかでコンテナが動いて解析が走っている状態 • CPUとかGPUとか毎の要件毎にリソースプールを作ってる
コンテナ - 実行インフラのスケーリング - 17 計算処理が増えても安心!
• 解析エンジンはDocker Imageとしてパッケージ化 • コンテナ内部の構成を定義 • コンテナへのファイル入力方法と、結果の出力方法を仕様として定義 • 仕様に合っている限りは基盤上で動く •
Docker registoryベースのアプリケーション管理 • アプリ毎のバージョン管理 • アプリ毎のリソース要件を付加 コンテナ - アプリケーション管理 - 18 アプリが増えても安心!
19 イケてるしヤバいエンジニア募集中 ABEJA Wantedly