Upgrade to Pro — share decks privately, control downloads, hide ads and more …

さくらインターネット研究所で研究に再挑戦した私の半年間の取り組み

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for tsurubee tsurubee
January 16, 2020

 さくらインターネット研究所で研究に再挑戦した私の半年間の取り組み

Avatar for tsurubee

tsurubee

January 16, 2020
Tweet

More Decks by tsurubee

Other Decks in Research

Transcript

  1. 4 ࣗݾ঺հ ௽ా തจʢͭΔͨ ͻΖ;Έʣ ɹɹॴଐɹ͘͞ΒΠϯλʔωοτݚڀॴ ݚڀһʢ2019೥8݄ʙʣ ɹɹֶྺɹ۝भେֶେֶӃ ࡐྉ෺ੑ޻ֶઐ߈ म࢜՝ఔमྃ

    ɹɹɹɹɹ۝भେֶେֶӃ ࡐྉ෺ੑ޻ֶઐ߈ ത࢜՝ఔதୀ ɹɹܦྺɹࡐྉ޻ֶͷݚڀɼফ๷࢜ɼػցֶशΤϯδχΞɼ ɹɹɹɹɹΠϯϑϥΤϯδχΞΛܦͯɼݱ৬ ڵຯྖҬɹػցֶशͱྔࢠίϯϐϡʔλɾΞχʔϦϯά @tsurubee3 https://blog.tsurubee.tech/
  2. • ຖ೔ఆ࣌લ45෼ؒ • ೚ҙࢀՃ • ຊ౰ʹࡶஊ͚ͩͷͱ͖΋͋Ε͹ɼ ݚڀͷٞ࿦Λ͢Δͱ͖΋͋Δ 7 • ֤ݚڀһ͕ڵຯɾؔ৺ʹ೚ͤͯɼ໘ന͍ͱࢥ͏ςʔϚʹͲ͠Ͳ͠औΓ૊ΜͰ͍͘

    • ֤ݚڀһ͕ίϯηϓτͰඳ͍ͨੈքΛ࣮ݱ͢Δ্Ͱඞཁͳ՝୊Λࣗ཯తʹݟ͚ͭɼ ݚڀΛਐΊ͍ͯ͘ ݚڀॴͷελΠϧɿࣗ཯ɾ෼ࢄɾڠௐ ࣗ཯ • ݚڀһ͸஍ཧతʹ෼ࢄ͍ͯ͠Δ ౦ژ6໊ʢ٬һݚڀһ2໊ʣɾେࡕ2໊ɾ෱Ԭ2໊ʢ2020೥1݄ݱࡏʣ • िҰճ։࠵ • ࿩͍ͨ͠ਓ͕࿩͢ελΠϧ • ൃදͷࣄલใࠂɾࣄޙใࠂɼ ݚڀͷΞΠσΞͳͲ༷ʑ • ෆఆظ • ݸผʹೋਓͰ࿩͢ͳͲ • ΞΠσΞΛฉ͍ͯ΋ΒͬͨΓɼ ࠷ۙ΍͍ͬͯΔ͜ͱΛ࿩ͨ͠Γ ఆྫձ ࡶஊλΠϜ ͦͷଞ ෼ࢄ ڠௐ
  3. 8 ݸਓͷελΠϧ ಇ͖ํ • ࿦จࣥච • ൃදɾσΟεΧογϣϯͷࢿྉ࡞੒ • αʔϕΠɼͳͲ ࿦จࣥචɿ೔ຊޠ1ɼӳޠ1

    ࢿྉ࡞੒ɿֶձ1ɼษڧձ3ɼاۀσΟεΧογϣϯ2 ൒೥ؒ ࠓޙ ࣗ෼ͷઐ໳෼໺ͷཱ֬ͱͦͷ෼໺Ͱͷത࢜߸औಘΛ໨ࢦ͢ ۀ຿ • बۀ࣌ؒɿ9:30ʙ18:30ʢ10෼୯ҐͰεϥΠυՄʣ • िʹ2ɼ3ճఔ౓ϦϞʔτϫʔΫʢࡏ୐ۈ຿ɿ8:30ʙ17:30ʣ • ݄ʹ1ɼ2ճఔ౓ग़ு • ࠃ಺ɾࠃࡍֶձʢൃදͷ༗ແʹؔΘΒͣʣ • اۀͱͷσΟεΧογϣϯ • ݚڀॴ߹॓ɼͳͲ
  4. 12 ssh username@<hostname or IP> SSH Client • WebαʔϏεΛࢧ͑ΔΠϯϑϥ͸ɼར༻ऀ͔Βͷଟ༷ͳཁٻ΍؀ڥͷมԽ౳ʹԠͯ͡ɼ ਝ଎͔ͭॊೈʹγεςϜߏ੒Λมߋ͢Δ͜ͱ͕ٻΊΒΕΔɽ

    • αʔϏε΁ͷଟ༷ͳཁٻʹԠͯ͡γεςϜߏ੒Λਝ଎ʹมߋ͍ͯ͘͜͠ͱ͕ٻΊΒΕΔ ঢ়گʹ͓͍ͯ͸ɼγεςϜͷӡ༻؅ཧ΋มߋʹ௥ैͰ͖Δඞཁ͕͋Δɽ • Ұํɼ҆શͳϦϞʔτ઀ଓαʔϏεͱͯ͠αʔό؅ཧʹ޿͘ར༻͞Ε͍ͯΔSSH͸ɼ Ϣʔβ͕ར༻͢ΔαʔόͷIPΞυϨε·ͨ͸ϗετ໊Λࢦఆͯ͠઀ଓཁٻΛૹΔ࢓૊Έ Ͱ͋Δɽ എܠɿγεςϜมԽʹ௥ैͰ͖Δӡ༻؅ཧ Ϣʔβ มߋ Server Server αʔόͷIPΞυϨεɾ ϗετ໊ͷมߋͳͲ Ϣʔβ͕มߋޙͷ৘ใ Λ஌Δඞཁ͕͋Δ
  5. 13 sshr: SSHϓϩΩγαʔό γεςϜ؅ཧऀ͕ࣗ༝ʹ૊ΈࠐΈՄೳͳϑοΫؔ਺Λ༻͍ͯγεςϜมԽʹ௥ैͰ͖Δ sshr※1ͱ͍͏SSHϓϩΩγαʔόΛఏҊ SSHΫϥΠΞϯτ ssh username@hostname Ϣʔβ໊ ઀ଓઌϗετ

    ؅ཧσʔλ ϑοΫؔ਺ SSH ϓϩΩγαʔό αʔό܈ ※1 https://github.com/tsurubee/sshr • Ϣʔβʹ༻͍ΔΫϥΠΞϯτπʔϧͷ੍ݶ΍มߋΛ՝͞ͳ͍ • ૊ΈࠐΉϑοΫؔ਺ͷΈͷमਖ਼ͰϓϩΩγαʔόͷಈ࡞Λࣗ༝ʹม͑ΒΕΔͨΊɼ γεςϜͷ࢓༷มߋʹରͯ͠ߴ͍֦ுੑΛ༗͢Δ
  6. 15 ࠓޙͷల๬ ΫϥΠΞϯτ͔ΒݟΔͱɼSSHͷϢʔβ໊ʹඥ͍ͮͨ1ͭͷαʔόʹ͔͠SSH઀ଓͰ͖ͣɼ ෳ਺ͷαʔόͷத͔Βҙਤతʹ઀ଓઌΛࢦఆͯ͠઀ଓཁٻΛૹΔ͜ͱ͕Ͱ͖ͳ͍ SSHΫϥΠΞϯτ ᶃ઀ଓཁٻ ᶄSSHϢʔβ໊ ᶅαʔόߏ੒৘ใ ؅ཧσʔλ ϑοΫؔ਺

    SSH ϓϩΩγαʔό ղܾҊ ՝୊ ɾκʔϯ΍ϩʔϧͳͲͷλά৘ใΛ΋ͱʹબ୒͢Δ ɾো֐ঢ়گɾαʔόෛՙͳͲͰιʔτͯ͠ϑΟϧλϦϯά ଟछଟ༷ͳϩʔϧ΍σόΠε͕͋ΓɼͦΕΒ͕࣌ʑࠁʑͱมԽ͢ΔϦιʔεͷ؅ཧʹ͓͍ͯ ΫϥΠΞϯτ͕ͦΕΒͷঢ়گΛஞҰ೺Ѳ͢Δ͜ͱͳ͘ɼ໨తαʔόΛݕࡧͯ͠઀ଓͰ͖Δ࢓૊Έ ᶆαʔόߏ੒৘ใ ᶇ઀ଓઌαʔόΛબ୒ ᶈ઀ଓཁٻ $ ssh tsurubee@sshr +-----+----------+---------+--------+-----------+----------+ | No. | Hostname | Zone | Role | CPU usage | Status | +----------------+---------+--------------------+----------+ | 1 | server01 | tokyo | db | 90 | critical | | 2 | raspi01 | fukuoka | sensor | 70 | warning | ɿɹɹɹɹ ɹ ɿ
  7. 20 (ྔࢠ)ΞχʔϦϯάϚγϯͷݱঢ় D-Waveͷ঎༻ԽͱԠ༻ࣄྫͷ޿͕Γ ࠃ಺اۀͷ࣮ূ࣮ݧ 2011೥ʹ঎༻ΞχʔϦϯάϚγϯD-Waveͷొ৔ ϑΥϧΫεϫʔήϯ͕๺ژͷࢢ಺ͷަ௨ौ଺ΛD-WaveΛ ׆༻ͯ͠ղফ͢Δࣾձ࣮ݧΛߦͬͨ※1 ※1 F. Neukart

    et al.: Traffic flow optimization using a quantum annealer, Frontiers in ICT, Vol. 4, 1-6 2017. ೔ཱ੡࡞ॴͷCMOSΞχʔϦϯάϚγϯ΍෋࢜௨ͷ σδλϧΞχʔϥ౳Λ׆༻࣮ͨ͠ূ࣮ݧ͕ߦΘΕͯ ͍Δ https://www.hitachi.co.jp/New/cnews/month/2020/01/0108.html
  8. 24 ϝλώϡʔϦεςΟοΫ ϝλώϡʔϦεςΟοΫͱ͸ ಛఆͷ໰୊ͷΈΛର৅ͱ͢ΔͷͰ͸ͳ͘ɺ༷ʑͳ໰୊ʹରͯ͠ɺ ൺֱత୹࣌ؒͰۙࣅղΛޮ཰Α͘ٻΊΔղ๏ ΞϧΰϦζϜͷྫ • Ҩ఻తΞϧΰϦζϜ • ٜίϩχʔ࠷దԽ

    • ཻࢠ܈࠷దԽ • ྔࢠΞχʔϦϯά ਐԽܭࢉΞϧΰϦζϜ Ϋϥ΢υίϯϐϡʔςΟϯά΍ ΤοδɾϑΥάίϯϐϡʔςΟ ϯάͷจ຺Ͱͷݚڀࣄྫ΋͋Δ https://www.sciencedirect.com/science/article/pii/S1110866515000353 https://dl.acm.org/doi/10.1145/3287921.3287984
  9. 25 ྔࢠΞχʔϦϯά • ྔࢠΞχʔϦϯάͱ͸ɼྔࢠྗֶͷ๏ଇΛར༻ͯ͠ɼ ͋Δछͷ৘ใॲཧΛ͢ΔͨΊͷ࿮૊ΈͰ͋Δ ྔࢠΞχʔϦϯάͱ͸ • ૊߹ͤ࠷దԽ໰୊ʹର͢ΔϝλώϡʔϦεςΟοΫ ͳղ๏ͱͯ͠஫໨͞Ε͍ͯΔ ̍ɽେن໛ͳ૊Έ߹Θͤ࠷దԽ໰୊Λߴ଎ʹղ͘͜ͱ͕ظ଴͞ΕΔ※2

    ̎ɽجఈঢ়ଶ͕ॖୀ͍ͯ͠Δ৔߹ʹɼภͬͨղ͕ಘΒΕΔ※3ʢΞϯϑΣΞαϯϓϦϯάʣ ྔࢠΞχʔϦϯάͷಛ௃ ※1 T. Kadowaki and H. Nishimori: Quantum annealing in the transverse Ising model, Phys. Rev. E, Vol. 58, 5355 1998. ※2 V. S. Denchev et al.: What is the Computational Value of Finite Range Tunneling?, Phys. Rev. X, Vol. 6, 031015 2016. ※3 B. H. Zhang et al.: Advantages of Unfair Quantum Ground-State Sampling, Scientific Reports, Vol. 7, 1044 2017. ྔࢠΞχʔϦϯά͸1998೥ͷ࿦จͰ೔ຊਓ ͕ཧ࿦ΛߟҊͨ͠※1 • ΠδϯάϞσϧͷجఈঢ়ଶΛྔࢠྗֶతͳΏΒ͗Λ ར༻ͯ͠୳ࡧ͢Δ͜ͱͰ૊߹ͤ࠷దԽ໰୊Λղ͘ ΠδϯάϞσϧ
  10. 26 1. ߴ଎ͳ૊Έ߹Θͤ࠷దԽͷղ๏ ※1 V. S. Denchev et al.: What

    is the Computational Value of Finite Range Tunneling?, Phys. Rev. X, Vol. 6, 031015 2016. ※2 ੢৿ लູ, େؔ ਅ೭: ྔࢠΞχʔϦϯάͷجૅ, ڞཱग़൛, 2018. ૊Έ߹Θͤͷ਺͕๲େͰैདྷͷख๏Ͱ͸࠷దղͷ୳ࡧʹ͕͔͔࣌ؒΔ໰୊Λ࣮༻తͳ ࣌ؒ಺Ͱղ͘͜ͱ͕ظ଴Ͱ͖Δɽ γϛϡϨʔςΟουΞχʔϦϯάʢSAʣʹൺ΂ͯ ྔࢠϞϯςΧϧϩ๏ʢQMCʣɼD-Wave͸໰୊αΠζͷ ֦େʹର͢Δ܏͖͕খ͍͞ɽ ࠷దԽ୳ࡧ·Ͱʹ͔͔Δ࣌ؒͱ໰୊ͷαΠζͷؔ܎※1 ҎԼͷΑ͏ͳٞ࿦΋͋Δ※2 ɾͦ΋ͦ΋SA͸ϝλώϡʔϦεςΟοΫͳΞϧΰϦζϜ ɹͰ͋Γɼߴ଎Ͱ͸ͳ͍ɽ ɾGPUͷ׆༻΍ฒྻॲཧͰSAɼQMC΋ߴ଎ԽͰ͖Δɽ
  11. 27 2. ΞϯϑΣΞαϯϓϦϯά ϑϦʔεϐϯͷ਺͕ଟ͍εϐϯ഑ஔ͕બ୒తʹ ಘΒΕ΍͍͢※1 ※1 Y. Matsuda et al.:

    Ground-state statistics from annealing algorithms: quantum versus classical approaches, New Journal of Physics, Vol. 11, 073021 2009. ※2 S. Mandrà et al.: Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians, Phys. Rev. Lett., Vol. 118, 070502 2017. ※3 D. Bertsimas et al.: Robust optimization with simulated annealing, Journal of Global Optimization, Vol. 48, 323-334 2009. جఈঢ়ଶ͕ॖୀ͍ͯ͠Δ৔߹ɼऔΓ͏Δશͯͷجఈঢ়ଶ͕౳͍֬͠཰ͰಘΒΕͳ͍͜ͱ͕ ྔࢠϞϯςΧϧϩ๏※1΍D-Wave※2Ͱࣔ͞Ε͍ͯΔʢSAͰ͸౳͍֬͠཰ͰಘΒΕΔʣ QA͕ಛఆͷجఈঢ়ଶʹ౸ୡ͢Δ૬ରස౓ͷώετάϥϜ ղͷ૊Έ׵͑΍͢͞ʹܨ͛ΒΕͳ͍ͩΖ͏͔ɽ কདྷͷෆ֬ఆΛड͚ೖΕͨϩόετ࠷దԽ※3
  12. 28 ITΠϯϑϥͱ࠷దԽ ෳࡶੑ͕૿͢ITΠϯϑϥ ͳͲ༷ʑͳཁҼ͕བྷΈ߹͍ɼγεςϜΛࢧ͑ΔΠϯϑϥ͸ෳࡶԽ͍ͯ͠Δɽ • ίϯςφͳͲͷԾ૝Խٕज़ͷීٴ • ෼ࢄγεςϜɾϚΠΫϩαʔϏεԽ • IoTσόΠεͷීٴʢΤοδɾϑΥάίϯϐϡʔςΟϯάʣ

    ITΠϯϑϥͷ࠷దԽ • ΠϯϑϥͷෳࡶԽʹ൐͍ɼϦιʔε؅ཧɼ؂ࢹɾҟৗݕ஌ɼίετ࡟ݮͳͲͷ໰୊΋ෳࡶԽ ͍ͯ͠Δɽ • ਓ͕ؒ༩͑ͨϧʔϧϕʔεͰͷ؅ཧ͸ݶք͕͋ΔͨΊɼಈతʹมԽ͢Δঢ়گΛߟྀ͠ͳ͕Β ࠷దԽ͢Δ࢓૊ΈΛ࣮ݱ͍ͨ͠ɽ Ϋϥ΢υίϯϐϡʔςΟϯά΍ΤοδɾϑΥάίϯϐϡʔςΟϯάͳͲզʑͷ෼໺Ͱ ղ͖͍ͨ૊߹ͤ࠷దԽ໰୊Λߟ͍͑ͯ͘
  13. 29 1. φοϓαοΫ໰୊ ※1 C. Guerrero et al.: Genetic Algorithm

    for Multi-Objective Optimization of Container Allocation in Cloud Architecture, Journal of Grid Computing, Vol. 16, 113-135 2018. ※2 Y. Gao et al.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing, J. Comput. Syst., Vol. 79, 1230-1242 2013. Physical Node ෳ਺ͷ෺ཧϊʔυʹରͯ͠ίϯςφɾԾ૝ϚγϯʢVMʣΛͲͷΑ͏ʹ഑ஔ͢Δͷ͔ ໰୊ ίϯςφɾVMͷऩ༰ઃܭ͸ɺγεςϜશମͷύϑΥʔϚϯε΍৴པੑɼεέʔϥϏϦςΟʹେ͖ͳӨڹ Λ༩͑Δɽ͜Ε·ͰʹҨ఻తΞϧΰϦζϜ※1΍ٜίϩχʔ࠷దԽ※2Ͱ࠷దԽͨ͠ࣄྫͳͲ͕ଘࡏ͢Δɽ Container or VM
  14. 30 2. δϣϒγϣοϓεέδϡʔϦϯά໰୊ ஍ཧతʹ෼ࢄͨ͠ίϯϐϡʔςΟϯάϦιʔεʹͲ͏λεΫΛׂΓ౰ͯΔ͔ ໰୊ ҟͳΔੑೳΛ༗͢Δෳ਺ͷϊʔυʹෳ਺ͷλεΫΛޮ཰తʹׂΓ౰ͯΔ͜ͱͰɼશλεΫͷ׬ྃ࣌ؒΛ ୹ॖ͢ΔɽλεΫಉ࢜ʹґଘؔ܎΍༏ઌॱҐ͕͋Δ৔߹΋૝ఆ͞ΕΔɽ ※1 B. M.

    Nguyen et al.: Evolutionary Algorithms to Optimize Task Scheduling Problem for the IoT Based Bag-of-Tasks Application in Cloud–Fog Computing Environment, Appl. Sci., Vol. 9, 1730 2019. ※1 https://jp.alibabacloud.com/about/what-is-edge-computing
  15. 31 3. ΫϥελϦϯά ίϯϐϡʔςΟϯάϦιʔεΛෛՙঢ়گ౳ͰΫϥελϦϯά͢Δɽ ૬ରతʹҟৗͳৼΔ෣͍Λ͍ͯ͠Δ΋ͷΛݕग़͢Δɽ ໰୊ ※1 B. Taskar et

    al.: Probabilistic Classification and Clustering in Relational Data, the Seventeenth International Joint Conference on Artificial Intelligence, 4-10 2001. ࣌ؒ ͭͷ఺ʹ୆ͷαʔόɼ7.ɼ*P5 σόΠε౳ͷଟ࣍ݩ࣌ܥྻσʔλͷ ৘ใ͕ೖ͍ͬͯΔΠϝʔδ https://towardsdatascience.com/semantic-similarity-classifier-and- clustering-sentences-based-on-semantic-similarity-a5a564e22304 $16ɾϝϞϦར༻཰ ౳ͷϝτϦΫε ͦΕͧΕΛಠཱͯ͠औΓѻΘͣޓ͍ʹ૬ؔΛ࣋ͭ ؔ܎σʔλͱͯ͠ΫϥελϦϯά͢Δख๏※1΋༗ޮ Ͱ͋Δͱߟ͑Δɽ