Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
異常検知ライブラリを作った話
Search
tsurubee
November 18, 2017
Technology
0
1k
異常検知ライブラリを作った話
ライブラリの特徴:特異スペクトル変換による変化点検知
tsurubee
November 18, 2017
Tweet
Share
More Decks by tsurubee
See All by tsurubee
DeepCrysTet: A Deep Learning Approach Using Tetrahedral Mesh for Predicting Properties of Crystalline Materials
tsurubee
0
650
3次元メッシュで表現した結晶構造を用いた材料物性の予測に向けた深層学習モデルの設計 / Design of Deep Learning Model for Predicting Material Properties Using Crystal Structure Represented by Three-Dimensional Mesh
tsurubee
1
1.9k
分散システムの性能異常に対する機械学習の解釈性に基づく原因診断手法 / A Method for Diagnosing the Causes of Performance Issues in Distributed Systems Based on the Interpretability of Machine Learning
tsurubee
0
1.3k
機械学習の解釈性に関する研究動向とシステム運用への応用 / A Survey on Interpretable Machine Learning and Its Application for System Operation
tsurubee
0
280
機械学習モデルの局所的な解釈に着目したシステムにおける異常の原因診断手法の構想
tsurubee
0
7.7k
アニーリングマシンを活用したエッジAIにおける 生成モデルの学習効率化のためのアーキテクチャ
tsurubee
0
1.4k
さくらインターネット研究所で研究に再挑戦した私の半年間の取り組み
tsurubee
1
2.8k
さくらインターネット研究所と鶴田の取り組みのご紹介
tsurubee
0
100
sshr: ユーザに変更を要求せずにシステム変化に追従可能なSSHプロキシサーバ
tsurubee
3
2.9k
Other Decks in Technology
See All in Technology
日経ビジュアルデータにおける スクロールテリングと地図/nikkei-tech-talk-26
nikkei_engineer_recruiting
0
160
サーバーサイドのデータプレーンプログラミング 〜 NVIDIA Blue Field / DOCA 〜
ebiken
PRO
1
230
よくわからんサービスについての問い合わせが来たときの強い味方 Amazon Q について
kazzpapa3
0
140
Capybara+生成AIでどこまで本当に自然言語のテストを書けるか?
yusukeiwaki
6
1.1k
Mobbing Practices
kawaguti
PRO
3
340
LeSSをはじめよう〜LeSSをはじめるとき、LeSSをはじめてから、知りたかったこと詰め合わせ〜
lycorptech_jp
PRO
2
210
WHOLENESS, REPAIRING, AND TO HAVE FUN: 全体性、修復、そして楽しむこと
snoozer05
PRO
3
3.6k
ガチ勢によるPipeCD運用大全〜滑らかなCI/CDを添えて〜 / ai-pipecd-encyclopedia
cyberagentdevelopers
PRO
2
140
DFTの実践的基礎理論
pfn
PRO
2
100
初心者に Vue.js を 教えるには
tsukuha
3
210
AWS re:Inventを徹底的に楽しむためのTips / Tips for thoroughly enjoying AWS re:Invent
yuj1osm
0
180
入門『状態』#kaigionrails / "state" for beginners with Rails
shinkufencer
2
810
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
510
110k
A designer walks into a library…
pauljervisheath
202
24k
10 Git Anti Patterns You Should be Aware of
lemiorhan
653
59k
Imperfection Machines: The Place of Print at Facebook
scottboms
264
13k
A Tale of Four Properties
chriscoyier
156
23k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Fontdeck: Realign not Redesign
paulrobertlloyd
81
5.2k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
3
360
How STYLIGHT went responsive
nonsquared
95
5.1k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
41
9.2k
Transcript
ҟৗݕϥΠϒϥϦ Λ࡞ͬͨ भ %BUB4DJFOUJTU.FFU6Q
ࣗݾհ ా തจ ʢ!UTVSVCFFʣ ΤϯδχΞྺɿ ͪΐ͍ େֶͷઐ߈Խֶ લ৬ফ࢜ झຯےτϨ ʢಛʹϕϯνϓϨεʣ
ࠓճͷ༰ɾɾ લʹθϩ͔ΒϓϩάϥϛϯάΛ࢝Ίͨࢲ͕ɺ ϊϦͱؾ߹͍ͰҟৗݕϥΠϒϥϦΛ࡞ͬͨ ɾҟৗݕʹ͍ͭͯ ɾϥΠϒϥϦΛ࡞ͬͨഎܠ ɾ࣮ΞϧΰϦζϜ ɾϦΞϧλΠϜҟৗࢹͷσϞ ͳͲͳͲɾɾ
ҟৗݕͱʁ
େଟͷσʔλͱৼΔ͍͕ ҟͳΔσʔλΛݕग़͢Δٕज़ σʔλϚΠχϯά نଇੑ ҟৗ σʔλͷࢁ
ҟৗݕͷԠ༻ྫ ίϯϐϡʔλΠϧε%PT߈ܸͷૣظൃݟ ηΩϡϦςΟ ނো༧ஹݕ ػց ྲྀߦͷݕɾ৽τϐοΫͷൃݟɾ ϢʔβߦಈͷมԽݕ ϚʔέςΟϯά
ҟৗσʔλྫ ʙͦͷ̍
ҟৗσʔλྫ ʙͦͷ̍ ҟৗʂ
ҟৗʂ if value > 120: print('ERROR!') JGจͰݕͰ͖ͦ͏ʂ ҟৗσʔλྫ ʙͦͷ̍
ҟৗσʔλྫ ʙͦͷ̎
Կ͔ҟৗ͕ى͖ͯΔ ҟৗʹ͍Ζ͍Ζ͋Δ ҟৗσʔλྫ ʙͦͷ̎
ҟৗݕͷྨ ֎Εݕ มԽݕ ҟৗݕ ٸܹͳৼΔ͍ͷมԽΛݕ ࣌ܥྻϞσϧ ଞͱେ͖͘ҟͳΔΛݕ ಠཱϞσϧ
ҟৗݕͷྨ ֎Εݕ มԽݕ ҟৗݕ ࠓճίονͷʂ ٸܹͳৼΔ͍ͷมԽΛݕ ࣌ܥྻϞσϧ ଞͱେ͖͘ҟͳΔΛݕ ಠཱϞσϧ
ҟৗݕϥΠϒϥϦ ʹ͍ͭͯ
ͳͥ࡞͔ͬͨ ͍ͭͷ͔ɺٕज़Λ͍͜ͳ͢ଆͰͳ͘ ࡞ΔଆʹͳΓ͍ͨ ϚΠϯυతഎܠ σʔλαΠΤϯεతഎܠ ϏδωεͷݱʹᷓΕΔ࣌ܥྻσʔλ ʢྫ͑ɺച্σʔλɾΞΫηεϩάͳͲʣ ͷมԽͷஹީΛ͍ͪૣ͘ݕ͍ͨ͠
࡞ͬͨͷ ಛʢڧΈʣԿʁ #BOQFJʢ൪ฌʣ ɿ1ZUIPOҟৗݕύοέʔδ "ಛҟεϖΫτϧมʹΑΔ࣌ܥྻσʔλͷมԽݕ ಛఆͷ֬ΛԾఆ͍ͯ͠ͳ͍ͨΊɺ ᶃଟ༷ͳมԽʹؤڧʹରԠͰ͖ɺ ᶄύϥϝʔλνϡʔχϯά͕༰қͳ มԽݕ͕Մೳ
ಛҟεϖΫτϧม ࣌ࠁ ཤྺߦྻ" ςετߦྻ# ओ෦ۭؒ ",''', ( ",''', ( มԽ
શମΠϝʔδ ʮೖػցֶशʹΑΔҟৗݕ ʕ3ʹΑΔ࣮ફΨΠυʯͷਤ Λࢀߟʹ࡞ աڈଆͱݱࡏଆͷߦྻಉ࢜ͷ৯͍ҧ͍ͷେ͖͞ΛఆྔԽ
มԽͷఆٛ ಛҟղʹΑΔಛύλʔϯͷநग़ 9 6 7 ಛҟ্ҐͷࠨಛҟϕΫτϧΛ NຊऔΓग़͢ աڈଆ ݱࡏଆ
( ͷ࠷େಛҟ) 4 ֊SΛͭNºOߦྻ9 N O S S O S มԽ
#BOQFJͷ͍ํ ҟৗݕ ϋΠύʔύϥϝʔλʢXʣɿεϥΠυ૭ͷαΠζ ΠϯϓοτʢEBUBʣϦετܕ/VN1Z BSSBZͳͲͷσʔλྻ ΞτϓοτʢSFTVMUTʣΠϯϓοτͱಉ͡αΠζͷ/VN1Z BSSBZ git clone https://github.com/tsurubee/banpei.git
cd banpei pip install . Πϯετʔϧ import banpei model = banpei.SST(w=50) results = model.detect(data) ˞ͨͬͨ̏ߦʂ
#BOQFJʹΑΔपҟৗݕ
#PLFIͱͷ࿈ܞʹΑΔ ϦΞϧλΠϜҟৗࢹ ͷઓ
#PLFIͱʁ IUUQTCPLFIQZEBUBPSHFOMBUFTU ɾ*OUFSBDUJWFWJTVBMJ[FUJPO ɾ/PWFMHSBQIJDT ɾ4USFBNJOH EZOBNJD MBSHFEBUB ɾ/POFFEUPXSJUF+BWBTDSJQU ରܕՄࢹԽڥΛఏڙ͢Δ1ZUIPOϥΠϒϥϦ IUUQTXXXTMJEFTIBSFOFUDPOUJOVVNJPIBTTMFGSFFEBUBTDJFODFBQQTXJUICPLFIXFCJOBS
σ Ϟ
• ʮಛҟεϖΫτϧมʹΑΔपҟৗݕʯ IUUQTZPVUVCFF'7/,"7U/1 • ʮಛҟεϖΫτϧมʹΑΔ͖ͷมԽݕʯ IUUQTZPVUVCF@XPVC-"I9L :PV5VCFʹσϞಈըΛެ։͍ͯ͠·͢ʂ
(JU)VCʹެ։͍ͯ͠·͢ʂ IUUQTHJUIVCDPNUTVSVCFFCBOQFJ
ϒϩάॻ͍͍ͯ·͢ʂ IUUQTHJUIVCDPNUTVSVCFFCBOQFJ
ࠓޙͷల l ಛҟεϖΫτϧมͷߴԽʹΑΔߋͳΔ ϦΞϧλΠϜੑͷٻ l ҟৗ௨ػೳͷ࣮ʹΑΔ࣮༻ੑͷ্ ͋ͱɺ৽ͨͳΞϧΰϦζϜ࣮͍ͨ͠ɾɾ
1ZUIPOίϛϡχςΟ ʹ͍ͭͯ
1Z'VLVPLBͬͯ·͢ʂ ݄ʹ-5ΠϕϯτΛ։࠵༧ఆͰ͢ʂ
1Z$PO ,ZVTIVΓ·͢ʂ ελοϑืूதʂ ڵຯ͕͋Δํ࠙ձͰ͓͔͚͍ͩ͘͞ʂ IUUQLZVTIVQZDPOKQ
͝ਗ਼ௌ͋Γ͕ͱ͏ ͍͟͝·ͨ͠ʂ