Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
異常検知ライブラリを作った話
Search
tsurubee
November 18, 2017
Technology
0
1k
異常検知ライブラリを作った話
ライブラリの特徴:特異スペクトル変換による変化点検知
tsurubee
November 18, 2017
Tweet
Share
More Decks by tsurubee
See All by tsurubee
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
1.5k
DeepCrysTet: A Deep Learning Approach Using Tetrahedral Mesh for Predicting Properties of Crystalline Materials
tsurubee
0
830
3次元メッシュで表現した結晶構造を用いた材料物性の予測に向けた深層学習モデルの設計 / Design of Deep Learning Model for Predicting Material Properties Using Crystal Structure Represented by Three-Dimensional Mesh
tsurubee
1
2k
分散システムの性能異常に対する機械学習の解釈性に基づく原因診断手法 / A Method for Diagnosing the Causes of Performance Issues in Distributed Systems Based on the Interpretability of Machine Learning
tsurubee
0
1.3k
機械学習の解釈性に関する研究動向とシステム運用への応用 / A Survey on Interpretable Machine Learning and Its Application for System Operation
tsurubee
0
310
機械学習モデルの局所的な解釈に着目したシステムにおける異常の原因診断手法の構想
tsurubee
0
7.8k
アニーリングマシンを活用したエッジAIにおける 生成モデルの学習効率化のためのアーキテクチャ
tsurubee
0
1.5k
さくらインターネット研究所で研究に再挑戦した私の半年間の取り組み
tsurubee
1
2.9k
さくらインターネット研究所と鶴田の取り組みのご紹介
tsurubee
0
120
Other Decks in Technology
See All in Technology
関東Kaggler会LT: 人狼コンペとLLM量子化について
nejumi
3
600
Classmethod AI Talks(CATs) #17 司会進行スライド(2025.02.19) / classmethod-ai-talks-aka-cats_moderator-slides_vol17_2025-02-19
shinyaa31
0
130
2024.02.19 W&B AIエージェントLT会 / AIエージェントが業務を代行するための計画と実行 / Algomatic 宮脇
smiyawaki0820
14
3.6k
データ資産をシームレスに伝達するためのイベント駆動型アーキテクチャ
kakehashi
PRO
2
550
『衛星データ利用の方々にとって近いようで触れる機会のなさそうな小話 ~ 衛星搭載ソフトウェアと衛星運用ソフトウェア (実物) を動かしながらわいわいする編 ~』 @日本衛星データコミニティ勉強会
meltingrabbit
0
150
地方拠点で エンジニアリングマネージャーってできるの? 〜地方という制約を楽しむオーナーシップとコミュニティ作り〜
1coin
1
230
滅・サービスクラス🔥 / Destruction Service Class
sinsoku
6
1.6k
開発組織のための セキュアコーディング研修の始め方
flatt_security
3
2.4k
白金鉱業Meetup Vol.17_あるデータサイエンティストのデータマネジメントとの向き合い方
brainpadpr
6
770
明日からできる!技術的負債の返済を加速するための実践ガイド~『ホットペッパービューティー』の事例をもとに~
recruitengineers
PRO
3
410
レビューを増やしつつ 高評価維持するテクニック
tsuzuki817
1
740
2025-02-21 ゆるSRE勉強会 Enhancing SRE Using AI
yoshiiryo1
1
380
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
9
450
Done Done
chrislema
182
16k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
RailsConf 2023
tenderlove
29
1k
A Philosophy of Restraint
colly
203
16k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.4k
A designer walks into a library…
pauljervisheath
205
24k
Producing Creativity
orderedlist
PRO
344
39k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Writing Fast Ruby
sferik
628
61k
Transcript
ҟৗݕϥΠϒϥϦ Λ࡞ͬͨ भ %BUB4DJFOUJTU.FFU6Q
ࣗݾհ ా തจ ʢ!UTVSVCFFʣ ΤϯδχΞྺɿ ͪΐ͍ େֶͷઐ߈Խֶ લ৬ফ࢜ झຯےτϨ ʢಛʹϕϯνϓϨεʣ
ࠓճͷ༰ɾɾ લʹθϩ͔ΒϓϩάϥϛϯάΛ࢝Ίͨࢲ͕ɺ ϊϦͱؾ߹͍ͰҟৗݕϥΠϒϥϦΛ࡞ͬͨ ɾҟৗݕʹ͍ͭͯ ɾϥΠϒϥϦΛ࡞ͬͨഎܠ ɾ࣮ΞϧΰϦζϜ ɾϦΞϧλΠϜҟৗࢹͷσϞ ͳͲͳͲɾɾ
ҟৗݕͱʁ
େଟͷσʔλͱৼΔ͍͕ ҟͳΔσʔλΛݕग़͢Δٕज़ σʔλϚΠχϯά نଇੑ ҟৗ σʔλͷࢁ
ҟৗݕͷԠ༻ྫ ίϯϐϡʔλΠϧε%PT߈ܸͷૣظൃݟ ηΩϡϦςΟ ނো༧ஹݕ ػց ྲྀߦͷݕɾ৽τϐοΫͷൃݟɾ ϢʔβߦಈͷมԽݕ ϚʔέςΟϯά
ҟৗσʔλྫ ʙͦͷ̍
ҟৗσʔλྫ ʙͦͷ̍ ҟৗʂ
ҟৗʂ if value > 120: print('ERROR!') JGจͰݕͰ͖ͦ͏ʂ ҟৗσʔλྫ ʙͦͷ̍
ҟৗσʔλྫ ʙͦͷ̎
Կ͔ҟৗ͕ى͖ͯΔ ҟৗʹ͍Ζ͍Ζ͋Δ ҟৗσʔλྫ ʙͦͷ̎
ҟৗݕͷྨ ֎Εݕ มԽݕ ҟৗݕ ٸܹͳৼΔ͍ͷมԽΛݕ ࣌ܥྻϞσϧ ଞͱେ͖͘ҟͳΔΛݕ ಠཱϞσϧ
ҟৗݕͷྨ ֎Εݕ มԽݕ ҟৗݕ ࠓճίονͷʂ ٸܹͳৼΔ͍ͷมԽΛݕ ࣌ܥྻϞσϧ ଞͱେ͖͘ҟͳΔΛݕ ಠཱϞσϧ
ҟৗݕϥΠϒϥϦ ʹ͍ͭͯ
ͳͥ࡞͔ͬͨ ͍ͭͷ͔ɺٕज़Λ͍͜ͳ͢ଆͰͳ͘ ࡞ΔଆʹͳΓ͍ͨ ϚΠϯυతഎܠ σʔλαΠΤϯεతഎܠ ϏδωεͷݱʹᷓΕΔ࣌ܥྻσʔλ ʢྫ͑ɺച্σʔλɾΞΫηεϩάͳͲʣ ͷมԽͷஹީΛ͍ͪૣ͘ݕ͍ͨ͠
࡞ͬͨͷ ಛʢڧΈʣԿʁ #BOQFJʢ൪ฌʣ ɿ1ZUIPOҟৗݕύοέʔδ "ಛҟεϖΫτϧมʹΑΔ࣌ܥྻσʔλͷมԽݕ ಛఆͷ֬ΛԾఆ͍ͯ͠ͳ͍ͨΊɺ ᶃଟ༷ͳมԽʹؤڧʹରԠͰ͖ɺ ᶄύϥϝʔλνϡʔχϯά͕༰қͳ มԽݕ͕Մೳ
ಛҟεϖΫτϧม ࣌ࠁ ཤྺߦྻ" ςετߦྻ# ओ෦ۭؒ ",''', ( ",''', ( มԽ
શମΠϝʔδ ʮೖػցֶशʹΑΔҟৗݕ ʕ3ʹΑΔ࣮ફΨΠυʯͷਤ Λࢀߟʹ࡞ աڈଆͱݱࡏଆͷߦྻಉ࢜ͷ৯͍ҧ͍ͷେ͖͞ΛఆྔԽ
มԽͷఆٛ ಛҟղʹΑΔಛύλʔϯͷநग़ 9 6 7 ಛҟ্ҐͷࠨಛҟϕΫτϧΛ NຊऔΓग़͢ աڈଆ ݱࡏଆ
( ͷ࠷େಛҟ) 4 ֊SΛͭNºOߦྻ9 N O S S O S มԽ
#BOQFJͷ͍ํ ҟৗݕ ϋΠύʔύϥϝʔλʢXʣɿεϥΠυ૭ͷαΠζ ΠϯϓοτʢEBUBʣϦετܕ/VN1Z BSSBZͳͲͷσʔλྻ ΞτϓοτʢSFTVMUTʣΠϯϓοτͱಉ͡αΠζͷ/VN1Z BSSBZ git clone https://github.com/tsurubee/banpei.git
cd banpei pip install . Πϯετʔϧ import banpei model = banpei.SST(w=50) results = model.detect(data) ˞ͨͬͨ̏ߦʂ
#BOQFJʹΑΔपҟৗݕ
#PLFIͱͷ࿈ܞʹΑΔ ϦΞϧλΠϜҟৗࢹ ͷઓ
#PLFIͱʁ IUUQTCPLFIQZEBUBPSHFOMBUFTU ɾ*OUFSBDUJWFWJTVBMJ[FUJPO ɾ/PWFMHSBQIJDT ɾ4USFBNJOH EZOBNJD MBSHFEBUB ɾ/POFFEUPXSJUF+BWBTDSJQU ରܕՄࢹԽڥΛఏڙ͢Δ1ZUIPOϥΠϒϥϦ IUUQTXXXTMJEFTIBSFOFUDPOUJOVVNJPIBTTMFGSFFEBUBTDJFODFBQQTXJUICPLFIXFCJOBS
σ Ϟ
• ʮಛҟεϖΫτϧมʹΑΔपҟৗݕʯ IUUQTZPVUVCFF'7/,"7U/1 • ʮಛҟεϖΫτϧมʹΑΔ͖ͷมԽݕʯ IUUQTZPVUVCF@XPVC-"I9L :PV5VCFʹσϞಈըΛެ։͍ͯ͠·͢ʂ
(JU)VCʹެ։͍ͯ͠·͢ʂ IUUQTHJUIVCDPNUTVSVCFFCBOQFJ
ϒϩάॻ͍͍ͯ·͢ʂ IUUQTHJUIVCDPNUTVSVCFFCBOQFJ
ࠓޙͷల l ಛҟεϖΫτϧมͷߴԽʹΑΔߋͳΔ ϦΞϧλΠϜੑͷٻ l ҟৗ௨ػೳͷ࣮ʹΑΔ࣮༻ੑͷ্ ͋ͱɺ৽ͨͳΞϧΰϦζϜ࣮͍ͨ͠ɾɾ
1ZUIPOίϛϡχςΟ ʹ͍ͭͯ
1Z'VLVPLBͬͯ·͢ʂ ݄ʹ-5ΠϕϯτΛ։࠵༧ఆͰ͢ʂ
1Z$PO ,ZVTIVΓ·͢ʂ ελοϑืूதʂ ڵຯ͕͋Δํ࠙ձͰ͓͔͚͍ͩ͘͞ʂ IUUQLZVTIVQZDPOKQ
͝ਗ਼ௌ͋Γ͕ͱ͏ ͍͟͝·ͨ͠ʂ