Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Multi-View Masked World Models for Visua...
Search
tt1717
October 25, 2023
Research
0
48
[論文紹介] Multi-View Masked World Models for Visual Robotic Manipulation
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
October 25, 2023
Tweet
Share
More Decks by tt1717
See All by tt1717
[勉強会] Decision Transformer
tt1717
0
28
[論文サーベイ] Survey on Google DeepMind’s Game AI 2
tt1717
0
34
[論文サーベイ] Survey on Google DeepMind’s Game AI
tt1717
0
21
[論文サーベイ] Survey on VLM for Video Game Quality Assurance
tt1717
0
22
[論文サーベイ] Survey on Pokemon AI 3
tt1717
0
75
[論文サーベイ] Survey on Pokemon AI 2
tt1717
0
65
[論文サーベイ] Survey on Pokemon AI
tt1717
0
100
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
120
[論文サーベイ] Survey on GPT for Games
tt1717
0
72
Other Decks in Research
See All in Research
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
270
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
110
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
230
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
480
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
130
R&Dチームを起ち上げる
shibuiwilliam
1
170
2026.01ウェビナー資料
elith
0
220
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
670
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
470
We Have a Design System, Now What?
morganepeng
54
8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
Large-scale JavaScript Application Architecture
addyosmani
515
110k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
A designer walks into a library…
pauljervisheath
210
24k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
Transcript
どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・多視点MAEを学習し,世界モデルを学習するMV-MWMを提案 ・シミュレーションで学習した方策をカメラキャリブレーションな しで実ロボットタスクを解決できる ・ビジュアルフィードバックによるロボット制御の頑健性を示す ・MWMをベースラインとして比較する ・マルチビュー制御&シングルビュー制御と視点ロバスト制御タス
クを実施 ・視点ランダムによる実験 ・アブレーションスタディ 「視点にマスク,ビデオAEのありなし,マスキング比率」 1.多視点データが与えられたときに,ランダムに画像をマスクした 視点をマスクしていない視点の両方の画素を再構成する多視点MAE の学習を行う 2.多視点MAEから取得した特徴から世界モデルを学習し,シミュ レーションと実世界の両方で「マルチビュー制御,シングルビュー 制御,視点ロバスト制御」などの様々なロボット制御を行う ・MWM (Masked World Model)の入力に使う画像を多視点画像を入 力としたもの ・複数のランダムな視点で学習した多視点MAEにより,カメラキャ リブレーションなしに実ロボットタスクを解決 Multi-View Masked World Models for Visual Robotic Manipulation (ICML 2023) Younggyo Seo, Junsu Kim, Stephen James, Kimin Lee, Jinwoo Shin, Pieter Abbeel https://arxiv.org/abs/2302.02408 2023/06/18 論文を表す画像 被引用数:1 1/7
Masked Autoencoder (MAE) ❏ パッチに分割された画像の75%をマスクしてViTに入力 ❏ 損失関数 ❏ マスクされたパッチの再構成誤差(MSE) ❏
画像分類タスクで高精度を達成 2/7 出典:https://arxiv.org/abs/2111.06377
実験 3/7 ❏ Meta-world ❏ RLBench ❏ DeepMind Control Suite
結果 4/7 ❏ 性能・サンプル効率ともにDreamerV2から改善 ❏ Pick Placeタスクの小さな物体が重要なタスクでは差が顕著 ❏ Quadruped Walkタスクの小さな物体のないタスクでは同等程度
小さな物体を 扱うタスク 小さな物体を扱わ ないタスク
結果:Ablation Studies 5/7 画像直接ではなく特徴量 マスクで性能向上 75%のマスクで最高性能 報酬予測で性能向上 ❏ 特徴量マスク+マスク比率75%+報酬予測で最高性能
まとめ 6/7 ❏ 世界モデルの画像表現学習にMAEを使用 ❏ 画像直接ではなく中間層でマスキング ❏ 報酬予測によりタスクに適した表現を獲得 ❏ DreamerV2と比較して小さな物体を扱うタスクで大幅に性能改善
参考文献 ❏ googleサイト 7/7