Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
May 04, 2012
Programming
21
2.3k
MongoDB for Analytics
Presented at MongoSF on May 4th, 2012.
John Nunemaker
PRO
May 04, 2012
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
AI: The stuff that nobody shows you
jnunemaker
PRO
2
260
Atom
jnunemaker
PRO
10
4.5k
MongoDB for Analytics
jnunemaker
PRO
11
1k
Addicted to Stable
jnunemaker
PRO
32
2.8k
MongoDB for Analytics
jnunemaker
PRO
16
30k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Why NoSQL?
jnunemaker
PRO
10
980
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.5k
I Have No Talent
jnunemaker
PRO
14
1k
Other Decks in Programming
See All in Programming
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
200
Grafana:建立系統全知視角的捷徑
blueswen
0
330
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
21
7.2k
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
AI巻き込み型コードレビューのススメ
nealle
2
300
登壇資料を作る時に意識していること #登壇資料_findy
konifar
4
1.2k
Data-Centric Kaggle
isax1015
2
780
AIによる開発の民主化を支える コンテキスト管理のこれまでとこれから
mulyu
3
300
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
380
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
200
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
180
Featured
See All Featured
Thoughts on Productivity
jonyablonski
74
5k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
First, design no harm
axbom
PRO
2
1.1k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
New Earth Scene 8
popppiees
1
1.5k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
150
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
340
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Building an army of robots
kneath
306
46k
Transcript
GitHub John Nunemaker MongoSF 2012 May 4, 2012 MongoDB for
Analytics A loving conversation with @jnunemaker
None
Background How hernias can be good for you
None
None
1 month Of evenings and weekends
1 year Since public launch
13 tiny servers 2 web, 6 app, 3 db, 2
queue
7-8 Million Page views per day
None
None
None
None
Implementation Imma show you how we do what we do
baby
Doing It (mostly) Live No aggregate querying
None
None
get('/track.gif') do track_service.record(...) TrackGif end
class TrackService def record(attrs) message = MessagePack.pack(attrs) @client.set(@queue, message) end
end
class TrackProcessor def run loop { process } end def
process record @client.get(@queue) end def record(message) attrs = MessagePack.unpack(message) Hit.record(attrs) end end
http://bit.ly/rt-kestrel
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
http://bit.ly/rt-counters http://bit.ly/rt-counters2
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{sid}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth Don’t say shard, don’t say shard...
Partition Hot Data Currently using collections for time frames
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
GitHub Thank you!
[email protected]
John Nunemaker MongoSF 2012 May 4,
2012 @jnunemaker