Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
October 18, 2011
Programming
16
30k
MongoDB for Analytics
Presented at Mongo Chicago 2011.
John Nunemaker
PRO
October 18, 2011
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
Atom
jnunemaker
PRO
10
4.2k
MongoDB for Analytics
jnunemaker
PRO
11
840
Addicted to Stable
jnunemaker
PRO
32
2.5k
MongoDB for Analytics
jnunemaker
PRO
21
2.2k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Why NoSQL?
jnunemaker
PRO
10
910
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.3k
I Have No Talent
jnunemaker
PRO
14
940
Why MongoDB Is Awesome
jnunemaker
PRO
18
4.4k
Other Decks in Programming
See All in Programming
Conform を推す - Advocating for Conform
mizoguchicoji
3
690
ARA Ansible for the teams
kksat
0
150
GoとPHPのインターフェイスの違い
shimabox
2
180
Spring gRPC について / About Spring gRPC
mackey0225
0
220
定理証明プラットフォーム lapisla.net
abap34
1
1.8k
富山発の個人開発サービスで日本中の学校の業務を改善した話
krpk1900
4
380
2024年のkintone API振り返りと2025年 / kintone API look back in 2024
tasshi
0
220
Pulsar2 を雰囲気で使ってみよう
anoken
0
240
バックエンドのためのアプリ内課金入門 (サブスク編)
qnighy
8
1.8k
CI改善もDatadogとともに
taumu
0
110
Honoのおもしろいミドルウェアをみてみよう
yusukebe
1
210
時計仕掛けのCompose
mkeeda
1
290
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
22
1.3k
Six Lessons from altMBA
skipperchong
27
3.6k
YesSQL, Process and Tooling at Scale
rocio
172
14k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.2k
Code Review Best Practice
trishagee
67
18k
Become a Pro
speakerdeck
PRO
26
5.1k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
Navigating Team Friction
lara
183
15k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Transcript
Ordered List John Nunemaker MongoChi 2011 October 18, 2011 MongoDB
for Analytics A loving conversation with @jnunemaker
Background As presented through interpretive dance
None
None
None
~1 month Of evenings and weekends
~4 dog years Since public launch
~6 tiny servers 2 web, 2 app, 2 db
~1-2 Million Page views per day
None
None
Implementation Imma show you how we do what we do
baby
Doing It Live No aggregate querying
get('/track.gif') do Hit.record(...) TrackGif end
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{site_id}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth The best laid plans of mice and men
Partition Hot Data Currently using collections for time frames
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
Ordered List Thank you!
[email protected]
John Nunemaker MongoChi 2011 October
18, 2011 @jnunemaker