Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
John Nunemaker
PRO
November 13, 2012
Programming
11
840
MongoDB for Analytics
Presented at MongoChicago on November 13, 2012.
John Nunemaker
PRO
November 13, 2012
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
Atom
jnunemaker
PRO
10
4.2k
Addicted to Stable
jnunemaker
PRO
32
2.5k
MongoDB for Analytics
jnunemaker
PRO
21
2.2k
MongoDB for Analytics
jnunemaker
PRO
16
30k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Why NoSQL?
jnunemaker
PRO
10
910
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.3k
I Have No Talent
jnunemaker
PRO
14
940
Why MongoDB Is Awesome
jnunemaker
PRO
18
4.4k
Other Decks in Programming
See All in Programming
データの整合性を保つ非同期処理アーキテクチャパターン / Async Architecture Patterns
mokuo
46
16k
社内フレームワークとその依存性解決 / in-house framework and its dependency management
vvakame
1
550
pylint custom ruleで始めるレビュー自動化
shogoujiie
0
100
負債になりにくいCSSをデザイナとつくるには?
fsubal
9
2.4k
CI改善もDatadogとともに
taumu
0
110
Kubernetes History Inspector(KHI)を触ってみた
bells17
0
220
AWSマネコンに複数のアカウントで入れるようになりました
yuhta28
2
160
ペアーズでの、Langfuseを中心とした評価ドリブンなリリースサイクルのご紹介
fukubaka0825
2
320
バックエンドのためのアプリ内課金入門 (サブスク編)
qnighy
8
1.8k
ISUCON14公式反省会LT: 社内ISUCONの話
astj
PRO
0
190
Ruby on cygwin 2025-02
fd0
0
140
プログラミング言語学習のススメ / why-do-i-learn-programming-language
yashi8484
0
130
Featured
See All Featured
For a Future-Friendly Web
brad_frost
176
9.5k
Agile that works and the tools we love
rasmusluckow
328
21k
Mobile First: as difficult as doing things right
swwweet
223
9.3k
KATA
mclloyd
29
14k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Language of Interfaces
destraynor
156
24k
Bash Introduction
62gerente
610
210k
Designing for Performance
lara
604
68k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
410
Transcript
GitHub John Nunemaker MongoChicago 2012 November 12, 2012 MongoDB for
Analytics A loving conversation with @jnunemaker
Background How hernias can be good for you
None
None
1 month Of evenings and weekends
18 months Since public launch
10-15 Million Page views per day
2.7 Billion Page views to date
13 tiny servers 2 web, 6 app, 3 db, 2
queue
requests/sec
ops/sec
cpu %
lock %
Implementation How we do what we do
Doing It (mostly) Live No aggregate querying
None
None
get('/track.gif') do track_service.record(...) TrackGif end
class TrackService def record(attrs) message = MessagePack.pack(attrs) @client.set(@queue, message) end
end
class TrackProcessor def run loop { process } end def
process record @client.get(@queue) end def record(message) attrs = MessagePack.unpack(message) Hit.record(attrs) end end
http://bit.ly/rt-kestrel
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
http://bit.ly/rt-counters http://bit.ly/rt-counters2
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{sid}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth Don’t say shard, don’t say shard...
Partition Hot Data Currently using collections for time frames
[ "content.2011.7", "content.2011.8", "content.2011.9", "content.2011.10", "content.2011.11", "content.2011.12", "content.2012.1", "content.2012.2", "content.2012.3",
"content.2012.4", ]
[ "resolutions.2011", "resolutions.2012", ]
Move
Move BigintMove
Move BigintMove MakeYouWannaMove
Move BigintMove MakeYouWannaMove DaMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove NightMove
Move BigintMove MakeYouWannaMove DaMove SmoothMove NightMove DanceMove
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
GitHub Thank you! john@github.com John Nunemaker MongoChicago 2012 November 12,
2012 @jnunemaker