Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TBD + update on FRATs WG activities
Search
transientskp
June 23, 2012
Science
0
110
TBD + update on FRATs WG activities
Sander ter Veen
LOFAR Transients Key Project Meeting, Meudon, December 2011
transientskp
June 23, 2012
Tweet
Share
More Decks by transientskp
See All by transientskp
Sourcefinding Strategy in MSSS, the first LOFAR survey
transientskp
0
120
A Modified Flagger for Transient Radio Signals
transientskp
0
140
Transient Detection and SQL
transientskp
0
200
The Trap: Now & Next
transientskp
0
110
Transients Database Performance
transientskp
0
160
Training the Trap
transientskp
1
130
AARTFAAC Status Update
transientskp
0
130
LOFAR + Gaia (+ X-ray) Transients
transientskp
0
190
Heterogeneous Telescope Networks
transientskp
0
130
Other Decks in Science
See All in Science
科学で迫る勝敗の法則(電気学会・SICE若手セミナー講演 2024年12月) / The principle of victory discovered by science (Lecture for young academists in IEEJ-SICE))
konakalab
0
110
Ignite の1年間の軌跡
ktombow
0
130
2025-06-11-ai_belgium
sofievl
1
130
CV_3_Keypoints
hachama
0
190
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
390
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
160
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
500
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
950
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
940
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
120
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.1k
CV_5_3dVision
hachama
0
140
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Optimizing for Happiness
mojombo
379
70k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
The Language of Interfaces
destraynor
158
25k
Transcript
Progress on the TBB front: FRATS and Cosmic Rays Sander ter Veen For the FRATS working group and the Cosmic Ray KSP
Transient Buffer Board (TBB) Store the raw data of each dipole/1le signal in a RAM ring buffer
Taking TBB data Step 1: Step 2: Select dipoles/staEons Select 5 μs – >1.3s of data
Turn the LOFAR telescope ….
into the Virtual LOFAR telescope
High Eme resoluEon (5ns) Large bandwidth (100 MHz) Lightning flash recorded with TBBs
All/large sky coverage Lightning direc1on finding LBA all‐sky image with 1 sta1on
Near‐field imaging Cosmic Rays Pulsed RFI
Parallel system Imaging + Beamformed And TBB Cosmic Rays! Credit: George Heald and LOFAR Pulsar Working Group
Limited Eme • 1.3 s at full resoluEon • More Eme by: – Less bandwidth – 25s @ 5 MHz – Less elements – More memory (upgrade to 5.2 s?)
– 100s @ 5 MHz
Obtaining TBB data • Current framework: Python scripts – Trigger handling program listens for triggers (UDP packages) – If a trigger is received check if dumping is allowed: • Is there an observaEon running? • Does the current project allow dumping?
• Does the current observaEon allow dumping? • Is dumping allowed on all observaEons at this Eme? – Is the current observaEon excluded? • Wanted: key that tells if dumping is allowed – Execute ssh commands at the staEon to tell them to dump data
Official TBB Trigger handling framework • Triggerbox (astronomer program) sends requests (STOP, DUMP, RESTART) • Requests are handled by central system (MAC) • Central system checks if requests can be complied to
• Central system asks the staEons to send TBB data. • Coming soon…
TBB data writer • A new data writer is started on each storage node at every new observaEon • Part of the metadata is added to the previous observaEon by a separate program • ASTRON is working on a new official supported data writer including metadata
• Similar to beam‐formed HDF5 data writer. • New data writer should support subband data
Science cases • Fast Radio Transients (FRATs) • Very High Energy Cosmic Rays (VHECR) • Ultra High Energy Cosmic Rays (NuMoon)
Possible FRATs Sources Millisecond pulses from: Pulsars/ RRATs (exo) planets Flare stars
Other sparkers? Lorimer et al. 2007 Keane et al. 2011
DetecEon • Rare events – Cover large area: • Incoherent beam – Cover long duraEon: • Parallel observaEons • Dispersed events: – MulEple DM trials
• Source idenEficaEon: – Use Transient Buffer Boards
FRATS ObservaEon Diagram Transient Buffer Board Data storage LOFAR dipoles Trigger algorithm Dump request handler
“Transient detected” ObservaEon parameters BlueGene/P UV Data BF Data BF Data TBB Data
FRATS Real‐Eme detecEon. Dedispersion in mulEple frequency bands Coincidence requirement between the bands Image from TBB data Used to idenEfy source
MSSS + FRATS • Piggy‐back on MSSS observaEons • Add incoherent stokes to MSSS observaEon • Send incoherent stokes to separate node • Test observaEons showed no severe data loss on imaging data
• Test run last weekend (9‐11 december) – No imaging dataloss in all but 1 (Cal.) observaEon • Incoherent stokes can be added
Current Trigger algorithm issues • In progress: Allow for non‐conEnuous frequency axis (MSSS) • To Do: Smarter RFI checks – MulE‐beam anE‐coincidence – DM=0 veto with last N samples – Pelican rouEnes? •
To Do: Check if pulse is likely from a known pulsar (k3match)
To Do: TBB data reducEon • TBB data volume is very large ~ 2 TB • Data volume can be reduced in two ways: • “staEon beamforming” – Some dipoles to form a staEon beams – Factor 48 reducEon – But: Lose sensiEvity outside primary beam (RFI in sidelobes)
• Coherent dedispersion – Only keep a fracEon of the Emeseries – Factor 10‐100 – But: Unable to analyse for other DMs
Cosmic Rays Very High Energy Cosmic Rays
Why study Cosmic Rays? • Most energeEc parEcles • Origin: AGN ? • To determine – Chemical composiEon – DirecEon – Energy
• Radio emission – complementary probe – 100% duty cycle
Radia1on mechanisms • Two main coherent emission mechanisms: • Charge excess (Askaryan, NuMoon in air) • GeomagneEc effect
Why CR + LOFAR • Dense instrumentaEon (polarizaEon!) • Probe electromagneEc field at many points • Pin down emission processes • Derive the properEes of air showers through radio emission
• Measure spectrum and composiEon of CR from 1017 ‐1019 eV (transiEon GalacEc to extragalacEc origin)
Cosmic Ray Detec1on • Two methods: – Radio self‐trigger • Any LOFAR staEon (large area) • But also RFI triggers – LORA triggered • No false triggers • Small area (only CRs near Superterp) • Train radio‐only trigger
• Obtain 1‐5 ms of Transient Buffer Board data
Royal Fes1ve Intermezzo (RFI)
Effec1ve RFI excision
There is another way: • LOFAR Radboud air shower Array (LORA) • ScinEllator array on superterp detects electrons and muons. • Coincidence between the scinEllators are cosmic rays
• Trigger TBBs from LORA
ObservaEon Diagram Transient Buffer Board Data storage LOFAR dipoles Dump request handler ObservaEon parameters
BlueGene/P UV Data BF Data TBB Data LORA ParEcle detector “Cosmic Ray Detected”
Cosmic Ray Foot(finger) Print
The Virtual LOFAR telescope: TBB data + pycrtools (LUS)
Analysis pipeline
Calibra1on
Peak IdenEficaEon
Find delays between dipoles
DirecEon esEmaEon
Delay stability
Beamforming
Lateral DistribuEon FuncEon
Theory matches signal?
Where is the shower core?
Where is the shower core? LDF, LORA esEmated core
Where is the shower core? LDF, Core by LOFAR Barycenter
Where is the shower core? LDF, LOFAR ConEnuity requirement
NuMoon • CR and neutrino > 10^21 eV • Large surface: Moon • Nanosecond pulses • Skip 2nd PPF Works •
Invert staEon PPF • Correct for misalignment from clocks • Noise analysis on 5 min data chunks
Conclusion • TBBs are a very usefull addiEon to the system • First tests FRATs + MSSS succesful • LOFAR is a major facility for radio detecEon of cosmic rays • Cosmic Ray observaEons and analysis (almost)
automated – SEll manually set permissions – Manually start trigger system and datawriters on CEP once.