Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
整数論と様々な数学
Search
Naoya Umezaki
October 06, 2018
0
770
整数論と様々な数学
MATHPOWER2018での講演。フィールズ賞受賞者Akshay Venkateshの業績紹介。
Naoya Umezaki
October 06, 2018
Tweet
Share
More Decks by Naoya Umezaki
See All by Naoya Umezaki
証明支援系LEANに入門しよう
unaoya
0
900
ミケル点とべズーの定理
unaoya
0
940
すうがく徒のつどい@オンライン「ラマヌジャンのデルタ」
unaoya
0
680
合同式と幾何学
unaoya
0
2.2k
すうがく徒のつどい@オンライン「ヴェイユ予想とl進層のフーリエ変換」
unaoya
0
860
Egisonパターンマッチによる彩色
unaoya
1
600
関数等式と双対性
unaoya
1
790
直交多項式と表現論
unaoya
0
880
導来代数幾何入門
unaoya
0
990
Featured
See All Featured
Optimizing for Happiness
mojombo
378
70k
Building an army of robots
kneath
305
45k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
4 Signs Your Business is Dying
shpigford
183
22k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Music & Morning Musume
bryan
47
6.5k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Pragmatic Product Professional
lauravandoore
33
6.6k
The Cult of Friendly URLs
andyhume
78
6.3k
Transcript
ͱ༷ʑͳֶ Akshay Venkateshͷۀհ ക࡚@unaoya ͢͏͕͘ͿΜ͔ MATHPOWER2018 10/6
डཧ༝ ͷ༷ʑͳΛ ▶ ྗֶܥ ▶ τϙϩδʔ ▶ දݱ ΛԠ༻ͯ͠ղܾɻ
ೋ࣍ܗࣜ ϥάϥϯδϡͷ࢛ฏํఆཧ x2 + y2 + z2 + w2 ͰશͯͷΛද͢ɻ
10 = 12 + 32 15 = 32 + 22 + 12 + 12
ೋ࣍ܗࣜ ೋ࣍ܗࣜͷม P(x1 , x2 , x3 ) = x2
1 + x2 2 + x2 3 Q(y1 , y2 ) = 2y2 1 + 2y1 y2 + 2y2 2 Λߟ͑Δɻ x1 = y1 + y2 , x2 = y1 , x3 = y2 ͱ͢Δɻ
ೋ࣍ܗࣜ P(x1 , x2 , x3 ) = x2 1
+ x2 2 + x2 3 Q(y1 , y2 ) = 2y2 1 + 2y1 y2 + 2y2 2 P(x1 , x2 , x3 ) = (y1 + y2 )2 + y2 1 + y2 2 = 2y2 1 + 2y1 y2 + 2y2 2
ೋ࣍ܗࣜ ͋Δೋ࣍ܗࣜQ ͕ɺଞͷೋ࣍ܗࣜP ͔Βม มͰදݱͰ͖Δ͔ʁmมͷP ͕nมͷ Q Λදݱ͢Δ͔ʁ ہॴେҬݪཧʢϋοηݪཧʣ p
ਐQp ͷൣғͱ࣮RͷൣғͰߟ͑Δɻ શͯͷp ٴͼRͰදݱͰ͖Ε༗ཧͷൣғ ͰදݱͰ͖Δ͔ʁ
ೋ࣍ܗࣜ ΤϨϯόʔά-ϰΣϯΧςγϡ Q ͕nมͷ࣌ɺશͯͷہॴతʹදݱՄೳͳ n − 7มҎԼͷೋ࣍ܗࣜQ′ Λදݱ͢Δɻ ূ໌ʹΤϧΰʔυཧɺྗֶܥΛ͏
ϦχοΫ༧ ੪࣍ଟ߲ࣜQ ʹର͠ɺQ(x) = d ͳΔx ͷू ߹ɻd ͰׂͬͯɺQ(x) =
1Ͱͷd → ∞Ͱͷ ͷ༷ࢠɻ Q(x) = x2 1 + x2 2 + · · · + x2 n Λߟ͑Δͱɺٿ໘্ ͷ༗ཧͷɻ ܈ͷ࡞༻͕͋Δ߹Λߟ͑ΔɻௐղੳͱΤ ϧΰʔυཧΛ͏ɻ
ΠσΞϧྨ܈ͷ ΠσΞϧྨ܈ͱʁͰͷૉҼղͷҰ ҙੑ 6 = 2 × 3 10 =
2 × 5 √ −5Λ͚Ճ͑Δͱ่ΕΔ 6 = 2 × 3 = (1 + √ −5)(1 − √ −5)
ΠσΞϧྨ܈ͷ ͜Εͷ่Ε۩߹ΛଌΔͷ͕ΠσΞϧྨ܈ɻ༗ ݶΞʔϕϧ܈ʹͳΔɻ ▶ Qͷ߹ɺΠσΞϧྨ܈1 ▶ Q( √ −5)ͷ߹ɺΠσΞϧྨ܈{±1}
ΠσΞϧྨ܈ͷ ৭ʑͳମQ(a)Λಈ͔ͨ͠ͱ͖ɺΠσΞ ϧྨ܈ʹͲͷΑ͏ͳ܈͕ݱΕΔ͔ʁ ίʔΤϯɺϨϯετϥͷΠσΞϧྨ܈ͷ ʹ͍ͭͯͷ؍ͱ༧ɻ
ΠσΞϧྨ܈ͷ ΤϨϯόʔά-ϰΣϯΧςγϡ-Σε λʔϥϯυ ίʔΤϯɺϨϯετϥ༧ͷؔମྨࣅΛূ ໌ͨ͠ɻ ؔମFp (x, a)༗ݶମ্ͷۂઢͷ༗ཧ ؔશͯूΊͨͷɻ͜Εಉ༷ʹΠσΞϧ ྨ܈ΛఆٛͰ͖Δɻ
ϑϧϏοπۭؒͷϗϞϩδʔ҆ఆੑΛͬͯ
ہॴରশۭؒ ϥϯάϥϯζରԠʹؔɻ ςΠϥʔɺϫΠϧζͷΨϩΞදݱͷߏΛࢤ ଜଟ༷ମ͕͑ͳ͍έʔεʹݚڀɻ ہॴରশۭؒͷίϗϞϩδʔΛදݱɺτϙ ϩδʔʹΑΓௐΔɻ