Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
整数論と様々な数学
Search
Naoya Umezaki
October 06, 2018
0
780
整数論と様々な数学
MATHPOWER2018での講演。フィールズ賞受賞者Akshay Venkateshの業績紹介。
Naoya Umezaki
October 06, 2018
Tweet
Share
More Decks by Naoya Umezaki
See All by Naoya Umezaki
証明支援系LEANに入門しよう
unaoya
1
1.7k
ミケル点とべズーの定理
unaoya
0
1k
すうがく徒のつどい@オンライン「ラマヌジャンのデルタ」
unaoya
0
710
合同式と幾何学
unaoya
0
2.2k
すうがく徒のつどい@オンライン「ヴェイユ予想とl進層のフーリエ変換」
unaoya
0
890
Egisonパターンマッチによる彩色
unaoya
1
620
関数等式と双対性
unaoya
1
820
直交多項式と表現論
unaoya
0
930
導来代数幾何入門
unaoya
0
1.1k
Featured
See All Featured
Making Projects Easy
brettharned
119
6.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
RailsConf 2023
tenderlove
30
1.2k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
A Tale of Four Properties
chriscoyier
161
23k
GraphQLとの向き合い方2022年版
quramy
49
14k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
30
2.7k
Statistics for Hackers
jakevdp
799
220k
Transcript
ͱ༷ʑͳֶ Akshay Venkateshͷۀհ ക࡚@unaoya ͢͏͕͘ͿΜ͔ MATHPOWER2018 10/6
डཧ༝ ͷ༷ʑͳΛ ▶ ྗֶܥ ▶ τϙϩδʔ ▶ දݱ ΛԠ༻ͯ͠ղܾɻ
ೋ࣍ܗࣜ ϥάϥϯδϡͷ࢛ฏํఆཧ x2 + y2 + z2 + w2 ͰશͯͷΛද͢ɻ
10 = 12 + 32 15 = 32 + 22 + 12 + 12
ೋ࣍ܗࣜ ೋ࣍ܗࣜͷม P(x1 , x2 , x3 ) = x2
1 + x2 2 + x2 3 Q(y1 , y2 ) = 2y2 1 + 2y1 y2 + 2y2 2 Λߟ͑Δɻ x1 = y1 + y2 , x2 = y1 , x3 = y2 ͱ͢Δɻ
ೋ࣍ܗࣜ P(x1 , x2 , x3 ) = x2 1
+ x2 2 + x2 3 Q(y1 , y2 ) = 2y2 1 + 2y1 y2 + 2y2 2 P(x1 , x2 , x3 ) = (y1 + y2 )2 + y2 1 + y2 2 = 2y2 1 + 2y1 y2 + 2y2 2
ೋ࣍ܗࣜ ͋Δೋ࣍ܗࣜQ ͕ɺଞͷೋ࣍ܗࣜP ͔Βม มͰදݱͰ͖Δ͔ʁmมͷP ͕nมͷ Q Λදݱ͢Δ͔ʁ ہॴେҬݪཧʢϋοηݪཧʣ p
ਐQp ͷൣғͱ࣮RͷൣғͰߟ͑Δɻ શͯͷp ٴͼRͰදݱͰ͖Ε༗ཧͷൣғ ͰදݱͰ͖Δ͔ʁ
ೋ࣍ܗࣜ ΤϨϯόʔά-ϰΣϯΧςγϡ Q ͕nมͷ࣌ɺશͯͷہॴతʹදݱՄೳͳ n − 7มҎԼͷೋ࣍ܗࣜQ′ Λදݱ͢Δɻ ূ໌ʹΤϧΰʔυཧɺྗֶܥΛ͏
ϦχοΫ༧ ੪࣍ଟ߲ࣜQ ʹର͠ɺQ(x) = d ͳΔx ͷू ߹ɻd ͰׂͬͯɺQ(x) =
1Ͱͷd → ∞Ͱͷ ͷ༷ࢠɻ Q(x) = x2 1 + x2 2 + · · · + x2 n Λߟ͑Δͱɺٿ໘্ ͷ༗ཧͷɻ ܈ͷ࡞༻͕͋Δ߹Λߟ͑ΔɻௐղੳͱΤ ϧΰʔυཧΛ͏ɻ
ΠσΞϧྨ܈ͷ ΠσΞϧྨ܈ͱʁͰͷૉҼղͷҰ ҙੑ 6 = 2 × 3 10 =
2 × 5 √ −5Λ͚Ճ͑Δͱ่ΕΔ 6 = 2 × 3 = (1 + √ −5)(1 − √ −5)
ΠσΞϧྨ܈ͷ ͜Εͷ่Ε۩߹ΛଌΔͷ͕ΠσΞϧྨ܈ɻ༗ ݶΞʔϕϧ܈ʹͳΔɻ ▶ Qͷ߹ɺΠσΞϧྨ܈1 ▶ Q( √ −5)ͷ߹ɺΠσΞϧྨ܈{±1}
ΠσΞϧྨ܈ͷ ৭ʑͳମQ(a)Λಈ͔ͨ͠ͱ͖ɺΠσΞ ϧྨ܈ʹͲͷΑ͏ͳ܈͕ݱΕΔ͔ʁ ίʔΤϯɺϨϯετϥͷΠσΞϧྨ܈ͷ ʹ͍ͭͯͷ؍ͱ༧ɻ
ΠσΞϧྨ܈ͷ ΤϨϯόʔά-ϰΣϯΧςγϡ-Σε λʔϥϯυ ίʔΤϯɺϨϯετϥ༧ͷؔମྨࣅΛূ ໌ͨ͠ɻ ؔମFp (x, a)༗ݶମ্ͷۂઢͷ༗ཧ ؔશͯूΊͨͷɻ͜Εಉ༷ʹΠσΞϧ ྨ܈ΛఆٛͰ͖Δɻ
ϑϧϏοπۭؒͷϗϞϩδʔ҆ఆੑΛͬͯ
ہॴରশۭؒ ϥϯάϥϯζରԠʹؔɻ ςΠϥʔɺϫΠϧζͷΨϩΞදݱͷߏΛࢤ ଜଟ༷ମ͕͑ͳ͍έʔεʹݚڀɻ ہॴରশۭؒͷίϗϞϩδʔΛදݱɺτϙ ϩδʔʹΑΓௐΔɻ