Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
整数論と様々な数学
Search
Naoya Umezaki
October 06, 2018
0
760
整数論と様々な数学
MATHPOWER2018での講演。フィールズ賞受賞者Akshay Venkateshの業績紹介。
Naoya Umezaki
October 06, 2018
Tweet
Share
More Decks by Naoya Umezaki
See All by Naoya Umezaki
証明支援系LEANに入門しよう
unaoya
0
530
ミケル点とべズーの定理
unaoya
0
830
すうがく徒のつどい@オンライン「ラマヌジャンのデルタ」
unaoya
0
630
合同式と幾何学
unaoya
0
2.2k
すうがく徒のつどい@オンライン「ヴェイユ予想とl進層のフーリエ変換」
unaoya
0
820
Egisonパターンマッチによる彩色
unaoya
1
570
関数等式と双対性
unaoya
1
750
直交多項式と表現論
unaoya
0
850
導来代数幾何入門
unaoya
0
950
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
230
52k
Scaling GitHub
holman
459
140k
Designing Experiences People Love
moore
139
23k
The World Runs on Bad Software
bkeepers
PRO
66
11k
Rails Girls Zürich Keynote
gr2m
94
13k
Making Projects Easy
brettharned
116
6k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
How GitHub (no longer) Works
holman
312
140k
Fireside Chat
paigeccino
34
3.1k
A better future with KSS
kneath
238
17k
YesSQL, Process and Tooling at Scale
rocio
170
14k
Music & Morning Musume
bryan
46
6.3k
Transcript
ͱ༷ʑͳֶ Akshay Venkateshͷۀհ ക࡚@unaoya ͢͏͕͘ͿΜ͔ MATHPOWER2018 10/6
डཧ༝ ͷ༷ʑͳΛ ▶ ྗֶܥ ▶ τϙϩδʔ ▶ දݱ ΛԠ༻ͯ͠ղܾɻ
ೋ࣍ܗࣜ ϥάϥϯδϡͷ࢛ฏํఆཧ x2 + y2 + z2 + w2 ͰશͯͷΛද͢ɻ
10 = 12 + 32 15 = 32 + 22 + 12 + 12
ೋ࣍ܗࣜ ೋ࣍ܗࣜͷม P(x1 , x2 , x3 ) = x2
1 + x2 2 + x2 3 Q(y1 , y2 ) = 2y2 1 + 2y1 y2 + 2y2 2 Λߟ͑Δɻ x1 = y1 + y2 , x2 = y1 , x3 = y2 ͱ͢Δɻ
ೋ࣍ܗࣜ P(x1 , x2 , x3 ) = x2 1
+ x2 2 + x2 3 Q(y1 , y2 ) = 2y2 1 + 2y1 y2 + 2y2 2 P(x1 , x2 , x3 ) = (y1 + y2 )2 + y2 1 + y2 2 = 2y2 1 + 2y1 y2 + 2y2 2
ೋ࣍ܗࣜ ͋Δೋ࣍ܗࣜQ ͕ɺଞͷೋ࣍ܗࣜP ͔Βม มͰදݱͰ͖Δ͔ʁmมͷP ͕nมͷ Q Λදݱ͢Δ͔ʁ ہॴେҬݪཧʢϋοηݪཧʣ p
ਐQp ͷൣғͱ࣮RͷൣғͰߟ͑Δɻ શͯͷp ٴͼRͰදݱͰ͖Ε༗ཧͷൣғ ͰදݱͰ͖Δ͔ʁ
ೋ࣍ܗࣜ ΤϨϯόʔά-ϰΣϯΧςγϡ Q ͕nมͷ࣌ɺશͯͷہॴతʹදݱՄೳͳ n − 7มҎԼͷೋ࣍ܗࣜQ′ Λදݱ͢Δɻ ূ໌ʹΤϧΰʔυཧɺྗֶܥΛ͏
ϦχοΫ༧ ੪࣍ଟ߲ࣜQ ʹର͠ɺQ(x) = d ͳΔx ͷू ߹ɻd ͰׂͬͯɺQ(x) =
1Ͱͷd → ∞Ͱͷ ͷ༷ࢠɻ Q(x) = x2 1 + x2 2 + · · · + x2 n Λߟ͑Δͱɺٿ໘্ ͷ༗ཧͷɻ ܈ͷ࡞༻͕͋Δ߹Λߟ͑ΔɻௐղੳͱΤ ϧΰʔυཧΛ͏ɻ
ΠσΞϧྨ܈ͷ ΠσΞϧྨ܈ͱʁͰͷૉҼղͷҰ ҙੑ 6 = 2 × 3 10 =
2 × 5 √ −5Λ͚Ճ͑Δͱ่ΕΔ 6 = 2 × 3 = (1 + √ −5)(1 − √ −5)
ΠσΞϧྨ܈ͷ ͜Εͷ่Ε۩߹ΛଌΔͷ͕ΠσΞϧྨ܈ɻ༗ ݶΞʔϕϧ܈ʹͳΔɻ ▶ Qͷ߹ɺΠσΞϧྨ܈1 ▶ Q( √ −5)ͷ߹ɺΠσΞϧྨ܈{±1}
ΠσΞϧྨ܈ͷ ৭ʑͳମQ(a)Λಈ͔ͨ͠ͱ͖ɺΠσΞ ϧྨ܈ʹͲͷΑ͏ͳ܈͕ݱΕΔ͔ʁ ίʔΤϯɺϨϯετϥͷΠσΞϧྨ܈ͷ ʹ͍ͭͯͷ؍ͱ༧ɻ
ΠσΞϧྨ܈ͷ ΤϨϯόʔά-ϰΣϯΧςγϡ-Σε λʔϥϯυ ίʔΤϯɺϨϯετϥ༧ͷؔମྨࣅΛূ ໌ͨ͠ɻ ؔମFp (x, a)༗ݶମ্ͷۂઢͷ༗ཧ ؔશͯूΊͨͷɻ͜Εಉ༷ʹΠσΞϧ ྨ܈ΛఆٛͰ͖Δɻ
ϑϧϏοπۭؒͷϗϞϩδʔ҆ఆੑΛͬͯ
ہॴରশۭؒ ϥϯάϥϯζରԠʹؔɻ ςΠϥʔɺϫΠϧζͷΨϩΞදݱͷߏΛࢤ ଜଟ༷ମ͕͑ͳ͍έʔεʹݚڀɻ ہॴରশۭؒͷίϗϞϩδʔΛදݱɺτϙ ϩδʔʹΑΓௐΔɻ