Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Python Application Case
Search
Vicky Vernando Dasta
January 27, 2018
Programming
0
65
Python Application Case
Python Workshop @ Kongkow IT 2018
Vicky Vernando Dasta
January 27, 2018
Tweet
Share
More Decks by Vicky Vernando Dasta
See All by Vicky Vernando Dasta
PYTHON 101
vickydasta
0
120
Other Decks in Programming
See All in Programming
ThorVG Viewer In VS Code
nors
0
490
gunshi
kazupon
1
130
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
130
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
610
Implementation Patterns
denyspoltorak
0
140
Navigating Dependency Injection with Metro
l2hyunwoo
1
200
Vibe codingでおすすめの言語と開発手法
uyuki234
0
140
AtCoder Conference 2025
shindannin
0
840
これならできる!個人開発のすゝめ
tinykitten
PRO
0
140
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
160
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
210
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
330
Featured
See All Featured
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
31
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
We Are The Robots
honzajavorek
0
130
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
The Spectacular Lies of Maps
axbom
PRO
1
410
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
39
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
74
It's Worth the Effort
3n
187
29k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.7k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Transcript
PYTHON WORKSHOP HAFIZHAN: WEB APPLICATION WITH PYTHON FLASK VICKY: PYTHON
101 AND APPLICATION IN SECURITY & MACHINE LEARNING
Workshop repo github.com/vickydasta/kongkow-python
About • Student @ physics dept. UR • Research assistant
at photonic lab @ UR • Research interest: photonic, applied machine learning on raspberry pi system • Python user 2014-now
Python at a glance • Multipurpose • OOP (everything is
object) • Dynamic typing • Batteries included • Case sensitive
None
Things we can build computer vision search engine security tools
embedded system web services web application machine learning apps
Your First Python Code print “hello, world!” print(“hello, world!”)
Data Structure • Integer • Float • List • String
• Boolean • Dictionary • Tupple
Data Structure: list • Create an empty list • Add
an item into it • Access item • Remove some item fr = [] fr.append(“guava”) fr[0] fr.remove(“guava”)
Data Structure: tupple • Immutable array • Data are read-only
• Items in tupple can’t be deleted • Can’t add more data once it’s created fixed_data = (1, 2) fixed_data[0] # 1 fixed_data[0] = 1
Data Structure: dict • Named-list • Key-value user = {“name”
“vicky”, “age”: 21} user[“name”] user.keys() user.values() user = {name=“vicky”, age=21}
Control Flow In Python, there are: • if • elif
• else • for • while • continue • break
Control Flow: if if 1 > 0: print “1 larger
than 0”
Control Flow: if-else if 1 > 2: print “hola” else:
print “holi”
Control Flow: if-elif-else if 1 > 2: print “hola” elif
1 > 3: print “holu” else: print “holi”
Loop: for • for loop is for iterating over iterable
object • range function creates list which is iterable • in above case, the i is 0, 1, 2, ..., 99 on each iteration for i in range(100): print(i)
Looping: while • while Requires a condition in order to
start or terminate the loop (while-break) while True: print “hello!” N = 0 while N < 10: N += 1
Function: def • def is the keyword for creating function
def gravity_force(M, m, r): return 6.62e+12*(M*m)/r**2 Function keyword Returned value(s) arguments function name
Coding style in Python • Python uses indentation • 3
spaces or 1 tab for each scope • No brackets or semicolons!
Python Application Case: Machine Learning Security
Machine Learning: Security: Predict land price by its size Port
scanner
Sec: Port scanner • Door knocking analogy • Bruteforce
ML: Linear Regression • Linear model out = mx+b •
Scikit learn search for the m • so the predicted value can be close to y
ML: Datasets X (M2) Y ($ USD) 200 2000 250
3500 300 5000 378 5400 456 6500 680 8700 800 10000
ML: model training datasets model f(x)
ML: prediction new input predicted output Trained Model
ML: scikit-learn • Machine learning is difficult problem • Fortunately,
we have scikit-learn
Python resources • github.com/vinta/awesome-python