Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Python Application Case
Search
Vicky Vernando Dasta
January 27, 2018
Programming
0
63
Python Application Case
Python Workshop @ Kongkow IT 2018
Vicky Vernando Dasta
January 27, 2018
Tweet
Share
More Decks by Vicky Vernando Dasta
See All by Vicky Vernando Dasta
PYTHON 101
vickydasta
0
110
Other Decks in Programming
See All in Programming
PostgreSQLのRow Level SecurityをPHPのORMで扱う Eloquent vs Doctrine #phpcon #track2
77web
2
530
AIエージェントはこう育てる - GitHub Copilot Agentとチームの共進化サイクル
koboriakira
0
590
第9回 情シス転職ミートアップ 株式会社IVRy(アイブリー)の紹介
ivry_presentationmaterials
1
320
Goで作る、開発・CI環境
sin392
0
230
Rails Frontend Evolution: It Was a Setup All Along
skryukov
0
140
Deep Dive into ~/.claude/projects
hiragram
14
2.6k
猫と暮らす Google Nest Cam生活🐈 / WebRTC with Google Nest Cam
yutailang0119
0
120
NPOでのDevinの活用
codeforeveryone
0
840
#QiitaBash MCPのセキュリティ
ryosukedtomita
1
1.3k
ソフトウェア品質を数字で捉える技術。事業成長を支えるシステム品質の マネジメント
takuya542
1
13k
Python型ヒント完全ガイド 初心者でも分かる、現代的で実践的な使い方
mickey_kubo
1
120
iOS 26にアップデートすると実機でのHot Reloadができない?
umigishiaoi
0
130
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
950
The Pragmatic Product Professional
lauravandoore
35
6.7k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
Building Adaptive Systems
keathley
43
2.7k
KATA
mclloyd
30
14k
It's Worth the Effort
3n
185
28k
Being A Developer After 40
akosma
90
590k
Statistics for Hackers
jakevdp
799
220k
Transcript
PYTHON WORKSHOP HAFIZHAN: WEB APPLICATION WITH PYTHON FLASK VICKY: PYTHON
101 AND APPLICATION IN SECURITY & MACHINE LEARNING
Workshop repo github.com/vickydasta/kongkow-python
About • Student @ physics dept. UR • Research assistant
at photonic lab @ UR • Research interest: photonic, applied machine learning on raspberry pi system • Python user 2014-now
Python at a glance • Multipurpose • OOP (everything is
object) • Dynamic typing • Batteries included • Case sensitive
None
Things we can build computer vision search engine security tools
embedded system web services web application machine learning apps
Your First Python Code print “hello, world!” print(“hello, world!”)
Data Structure • Integer • Float • List • String
• Boolean • Dictionary • Tupple
Data Structure: list • Create an empty list • Add
an item into it • Access item • Remove some item fr = [] fr.append(“guava”) fr[0] fr.remove(“guava”)
Data Structure: tupple • Immutable array • Data are read-only
• Items in tupple can’t be deleted • Can’t add more data once it’s created fixed_data = (1, 2) fixed_data[0] # 1 fixed_data[0] = 1
Data Structure: dict • Named-list • Key-value user = {“name”
“vicky”, “age”: 21} user[“name”] user.keys() user.values() user = {name=“vicky”, age=21}
Control Flow In Python, there are: • if • elif
• else • for • while • continue • break
Control Flow: if if 1 > 0: print “1 larger
than 0”
Control Flow: if-else if 1 > 2: print “hola” else:
print “holi”
Control Flow: if-elif-else if 1 > 2: print “hola” elif
1 > 3: print “holu” else: print “holi”
Loop: for • for loop is for iterating over iterable
object • range function creates list which is iterable • in above case, the i is 0, 1, 2, ..., 99 on each iteration for i in range(100): print(i)
Looping: while • while Requires a condition in order to
start or terminate the loop (while-break) while True: print “hello!” N = 0 while N < 10: N += 1
Function: def • def is the keyword for creating function
def gravity_force(M, m, r): return 6.62e+12*(M*m)/r**2 Function keyword Returned value(s) arguments function name
Coding style in Python • Python uses indentation • 3
spaces or 1 tab for each scope • No brackets or semicolons!
Python Application Case: Machine Learning Security
Machine Learning: Security: Predict land price by its size Port
scanner
Sec: Port scanner • Door knocking analogy • Bruteforce
ML: Linear Regression • Linear model out = mx+b •
Scikit learn search for the m • so the predicted value can be close to y
ML: Datasets X (M2) Y ($ USD) 200 2000 250
3500 300 5000 378 5400 456 6500 680 8700 800 10000
ML: model training datasets model f(x)
ML: prediction new input predicted output Trained Model
ML: scikit-learn • Machine learning is difficult problem • Fortunately,
we have scikit-learn
Python resources • github.com/vinta/awesome-python