Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Python Application Case
Search
Vicky Vernando Dasta
January 27, 2018
Programming
0
65
Python Application Case
Python Workshop @ Kongkow IT 2018
Vicky Vernando Dasta
January 27, 2018
Tweet
Share
More Decks by Vicky Vernando Dasta
See All by Vicky Vernando Dasta
PYTHON 101
vickydasta
0
120
Other Decks in Programming
See All in Programming
SwiftUIで本格音ゲー実装してみた
hypebeans
0
490
AIコーディングエージェント(Manus)
kondai24
0
210
Deno Tunnel を使ってみた話
kamekyame
0
230
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
160
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
ゆくKotlin くるRust
exoego
1
160
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
150
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
190
Cap'n Webについて
yusukebe
0
150
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
6
3.9k
gunshi
kazupon
1
110
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
570
Featured
See All Featured
For a Future-Friendly Web
brad_frost
180
10k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.8k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Designing Powerful Visuals for Engaging Learning
tmiket
0
190
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
49
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
73
Speed Design
sergeychernyshev
33
1.4k
Mind Mapping
helmedeiros
PRO
0
38
Transcript
PYTHON WORKSHOP HAFIZHAN: WEB APPLICATION WITH PYTHON FLASK VICKY: PYTHON
101 AND APPLICATION IN SECURITY & MACHINE LEARNING
Workshop repo github.com/vickydasta/kongkow-python
About • Student @ physics dept. UR • Research assistant
at photonic lab @ UR • Research interest: photonic, applied machine learning on raspberry pi system • Python user 2014-now
Python at a glance • Multipurpose • OOP (everything is
object) • Dynamic typing • Batteries included • Case sensitive
None
Things we can build computer vision search engine security tools
embedded system web services web application machine learning apps
Your First Python Code print “hello, world!” print(“hello, world!”)
Data Structure • Integer • Float • List • String
• Boolean • Dictionary • Tupple
Data Structure: list • Create an empty list • Add
an item into it • Access item • Remove some item fr = [] fr.append(“guava”) fr[0] fr.remove(“guava”)
Data Structure: tupple • Immutable array • Data are read-only
• Items in tupple can’t be deleted • Can’t add more data once it’s created fixed_data = (1, 2) fixed_data[0] # 1 fixed_data[0] = 1
Data Structure: dict • Named-list • Key-value user = {“name”
“vicky”, “age”: 21} user[“name”] user.keys() user.values() user = {name=“vicky”, age=21}
Control Flow In Python, there are: • if • elif
• else • for • while • continue • break
Control Flow: if if 1 > 0: print “1 larger
than 0”
Control Flow: if-else if 1 > 2: print “hola” else:
print “holi”
Control Flow: if-elif-else if 1 > 2: print “hola” elif
1 > 3: print “holu” else: print “holi”
Loop: for • for loop is for iterating over iterable
object • range function creates list which is iterable • in above case, the i is 0, 1, 2, ..., 99 on each iteration for i in range(100): print(i)
Looping: while • while Requires a condition in order to
start or terminate the loop (while-break) while True: print “hello!” N = 0 while N < 10: N += 1
Function: def • def is the keyword for creating function
def gravity_force(M, m, r): return 6.62e+12*(M*m)/r**2 Function keyword Returned value(s) arguments function name
Coding style in Python • Python uses indentation • 3
spaces or 1 tab for each scope • No brackets or semicolons!
Python Application Case: Machine Learning Security
Machine Learning: Security: Predict land price by its size Port
scanner
Sec: Port scanner • Door knocking analogy • Bruteforce
ML: Linear Regression • Linear model out = mx+b •
Scikit learn search for the m • so the predicted value can be close to y
ML: Datasets X (M2) Y ($ USD) 200 2000 250
3500 300 5000 378 5400 456 6500 680 8700 800 10000
ML: model training datasets model f(x)
ML: prediction new input predicted output Trained Model
ML: scikit-learn • Machine learning is difficult problem • Fortunately,
we have scikit-learn
Python resources • github.com/vinta/awesome-python