Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Python Application Case
Search
Vicky Vernando Dasta
January 27, 2018
Programming
0
63
Python Application Case
Python Workshop @ Kongkow IT 2018
Vicky Vernando Dasta
January 27, 2018
Tweet
Share
More Decks by Vicky Vernando Dasta
See All by Vicky Vernando Dasta
PYTHON 101
vickydasta
0
110
Other Decks in Programming
See All in Programming
既存デザインを変更せずにタップ領域を広げる方法
tahia910
1
240
プロダクト志向なエンジニアがもう一歩先の価値を目指すために意識したこと
nealle
0
120
Rubyでやりたい駆動開発 / Ruby driven development
chobishiba
1
510
なんとなくわかった気になるブロックテーマ入門/contents.nagoya 2025 6.28
chiilog
1
240
ReadMoreTextView
fornewid
1
490
AIプログラマーDevinは PHPerの夢を見るか?
shinyasaita
1
170
ふつうの技術スタックでアート作品を作ってみる
akira888
0
220
PHPで始める振る舞い駆動開発(Behaviour-Driven Development)
ohmori_yusuke
2
230
Cursor AI Agentと伴走する アプリケーションの高速リプレイス
daisuketakeda
1
130
『自分のデータだけ見せたい!』を叶える──Laravel × Casbin で複雑権限をスッキリ解きほぐす 25 分
akitotsukahara
1
590
プロダクト志向ってなんなんだろうね
righttouch
PRO
0
170
Discover Metal 4
rei315
2
100
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
710
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Typedesign – Prime Four
hannesfritz
42
2.7k
Music & Morning Musume
bryan
46
6.6k
Into the Great Unknown - MozCon
thekraken
39
1.9k
Thoughts on Productivity
jonyablonski
69
4.7k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Designing for Performance
lara
609
69k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
GitHub's CSS Performance
jonrohan
1031
460k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Transcript
PYTHON WORKSHOP HAFIZHAN: WEB APPLICATION WITH PYTHON FLASK VICKY: PYTHON
101 AND APPLICATION IN SECURITY & MACHINE LEARNING
Workshop repo github.com/vickydasta/kongkow-python
About • Student @ physics dept. UR • Research assistant
at photonic lab @ UR • Research interest: photonic, applied machine learning on raspberry pi system • Python user 2014-now
Python at a glance • Multipurpose • OOP (everything is
object) • Dynamic typing • Batteries included • Case sensitive
None
Things we can build computer vision search engine security tools
embedded system web services web application machine learning apps
Your First Python Code print “hello, world!” print(“hello, world!”)
Data Structure • Integer • Float • List • String
• Boolean • Dictionary • Tupple
Data Structure: list • Create an empty list • Add
an item into it • Access item • Remove some item fr = [] fr.append(“guava”) fr[0] fr.remove(“guava”)
Data Structure: tupple • Immutable array • Data are read-only
• Items in tupple can’t be deleted • Can’t add more data once it’s created fixed_data = (1, 2) fixed_data[0] # 1 fixed_data[0] = 1
Data Structure: dict • Named-list • Key-value user = {“name”
“vicky”, “age”: 21} user[“name”] user.keys() user.values() user = {name=“vicky”, age=21}
Control Flow In Python, there are: • if • elif
• else • for • while • continue • break
Control Flow: if if 1 > 0: print “1 larger
than 0”
Control Flow: if-else if 1 > 2: print “hola” else:
print “holi”
Control Flow: if-elif-else if 1 > 2: print “hola” elif
1 > 3: print “holu” else: print “holi”
Loop: for • for loop is for iterating over iterable
object • range function creates list which is iterable • in above case, the i is 0, 1, 2, ..., 99 on each iteration for i in range(100): print(i)
Looping: while • while Requires a condition in order to
start or terminate the loop (while-break) while True: print “hello!” N = 0 while N < 10: N += 1
Function: def • def is the keyword for creating function
def gravity_force(M, m, r): return 6.62e+12*(M*m)/r**2 Function keyword Returned value(s) arguments function name
Coding style in Python • Python uses indentation • 3
spaces or 1 tab for each scope • No brackets or semicolons!
Python Application Case: Machine Learning Security
Machine Learning: Security: Predict land price by its size Port
scanner
Sec: Port scanner • Door knocking analogy • Bruteforce
ML: Linear Regression • Linear model out = mx+b •
Scikit learn search for the m • so the predicted value can be close to y
ML: Datasets X (M2) Y ($ USD) 200 2000 250
3500 300 5000 378 5400 456 6500 680 8700 800 10000
ML: model training datasets model f(x)
ML: prediction new input predicted output Trained Model
ML: scikit-learn • Machine learning is difficult problem • Fortunately,
we have scikit-learn
Python resources • github.com/vinta/awesome-python