Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Predicting the future in 10 minutes or less - a...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Vlad Iliescu
May 13, 2017
Programming
0
77
Predicting the future in 10 minutes or less - an introduction to Azure Machine Learning
Vlad Iliescu
May 13, 2017
Tweet
Share
More Decks by Vlad Iliescu
See All by Vlad Iliescu
Poor Man’s BingChat – Building an Internet-connected Search Assistant from scratch*
vladiliescu
0
780
Training Better Models Using Automated Machine Learning
vladiliescu
0
71
Machine Learning in Azure: Service versus Studio
vladiliescu
1
2.1k
Getting Started with Machine Learning Using Azure Machine Learning Studio and Kaggle Competitions
vladiliescu
1
1.9k
Boy meets Girl: A Machine Learning Deployment Story
vladiliescu
0
2.2k
Mind Reading - Understanding Recommender Systems
vladiliescu
0
91
Privacy-First Development
vladiliescu
0
100
TypeScript vs CoffeeScript
vladiliescu
0
2.1k
Micro Web Frameworks in .NET
vladiliescu
2
330
Other Decks in Programming
See All in Programming
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
200
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
280
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
180
生成AIを活用したソフトウェア開発ライフサイクル変革の現在値
hiroyukimori
PRO
0
110
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
140
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
4k
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.4k
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
310
CSC307 Lecture 02
javiergs
PRO
1
780
要求定義・仕様記述・設計・検証の手引き - 理論から学ぶ明確で統一された成果物定義
orgachem
PRO
1
230
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
6
680
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
440
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.2k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
30 Presentation Tips
portentint
PRO
1
220
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
70
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
350
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Transcript
Predicting the Future in 10 Minutes or Less
...a 45-minute presentation by @vladiliescu
What do you mean, “Predict the future”?
Predict the future
Predict the future grades of a student
Predict the future grades of a student at math
Predict the future grades of a student at math using...
a) Divination
b) Statistics
c) Machine Learning
c) Machine Learning A way to write programs that we
don’t exactly know how to write.
c) Machine Learning A way to write programs that we
don’t exactly know how to write.
Predict the future grades of a student at math using
machine learning…
Apache Spark MLlib Microsoft Azure ML Studio Google Prediction API
Google TensorFlow Amazon Machine Learning Samsung Veles
Microsoft Azure ML Studio
What have we picked so far? ✔ A well-defined problem
✔ An approach for predicting the future ✔ A machine learning framework
What are we missing?
The Data
UCI Student Performance Data Set
https://archive.ics.uci.edu/ml/datasets/Student+Performance
G3 - final grade (numeric: from 0 to 20, output
target)
Ready?
Steady?
GO!
Open the Azure experiment here https://gallery.cortanaintelligence.com/Experiment/Predict-Student-Grades-at-Math (or take a look
at the following slides)
None
None
None
None
None
None
None
None
None
None
None
None
What have we done so far? (continued) ✔ Trained&deployed the
simplest model we could ✔ Consumed the web service using Excel ✔ Learned how to evaluate a trained model
Thanks for watching! Vlad Iliescu ↪vladiliescu.ro