Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
広告ログのリアルタイム集計とその活用 / Realtime Ad log aggregati...
Search
wata
July 28, 2017
Technology
2
6.7k
広告ログのリアルタイム集計とその活用 / Realtime Ad log aggregation and utilization
Cookpad Tech Kitchen #9
https://cookpad.connpass.com/event/60831/
wata
July 28, 2017
Tweet
Share
More Decks by wata
See All by wata
クックパッド動画事業開発のチャレンジ / CookpadTV challenge
wata
1
2.2k
クックパッドの動画事業での AWS AppSync 活用事例 / Practical use of AWS AppSync by Cookpad
wata
17
11k
Other Decks in Technology
See All in Technology
組織貢献をするフリーランスエンジニアという生き方
n_takehata
1
1.3k
AndroidXR 開発ツールごとの できることできないこと
donabe3
0
130
急成長する企業で作った、エンジニアが輝ける制度/ 20250214 Rinto Ikenoue
shift_evolve
3
1.3k
Building Products in the LLM Era
ymatsuwitter
10
5.5k
現場で役立つAPIデザイン
nagix
33
12k
データマネジメントのトレードオフに立ち向かう
ikkimiyazaki
6
1k
Swiftの “private” を テストする / Testing Swift "private"
yutailang0119
0
130
室長と気ままに学ぶマイクロソフトのビジネスアプリケーションとビジネスプロセス
ryoheig0405
0
370
2/18/25: Java meets AI: Build LLM-Powered Apps with LangChain4j
edeandrea
PRO
0
120
ソフトウェアエンジニアと仕事するときに知っておいたほうが良いこと / Key points for working with software engineers
pinkumohikan
0
100
個人開発から公式機能へ: PlaywrightとRailsをつなげた3年の軌跡
yusukeiwaki
11
3k
目の前の仕事と向き合うことで成長できる - 仕事とスキルを広げる / Every little bit counts
soudai
24
7.2k
Featured
See All Featured
Speed Design
sergeychernyshev
27
790
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Producing Creativity
orderedlist
PRO
344
39k
A designer walks into a library…
pauljervisheath
205
24k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Raft: Consensus for Rubyists
vanstee
137
6.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.4k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
We Have a Design System, Now What?
morganepeng
51
7.4k
Transcript
ࠂϩάͷϦΞϧλΠϜूܭͱ ͦͷ׆༻ 2017-07-26 Cookpad Tech Kitchen #9 wata
自己紹介 • 渡辺 慎也 • マーケティングプロダクト開発部 • 広告配信基盤周りの整備、開発保守 • やりたいこと
• Rails でアプリを書くよりコンテンツ配信に関わ る、ミドルウェア、インフラ、プロトコルのアー キテクチャを考えることや、改善、安定運用
Agenda • サービス規模 • アーキテクチャ ‣ 以前 ‣ Lambda Architecture
‣ 変更後 • 活用方法について
サービス規模 • インスタンス • c3.xlarge, c4.xlarge で構成 • 5 〜
18 台(Auto Scaling) • ピーク時同時リクエスト数 • 2,000 req/s 以上 ※2017年7月現在
アーキテクチャ
アーキテクチャ HTML レンダリング時に JavaScript で広告配信サーバに リクエストを投げて表示する。 配信 サーバ impression log
click log 302 redirect JSON Ajax
アーキテクチャ reverse proxy app mysql memcached fluentd queue Amazon
Redshift #SJDPMBHF 4USFBNJOH-PBE backup batch %8) Amazon DynamoDB
アーキテクチャ reverse proxy app mysql memcached fluentd queue Amazon
Redshift #SJDPMBHF 4USFBNJOH-PBE backup batch %8) Amazon DynamoDB ログデータがバッチ集計終わって mysql に入るまでに 1 時間ぐらいのラグがあった
もっと早くログが出ているか 確認したい!
そこで
Lambda Architecture
Lambda Architecture 出典元:http://lambda-architecture.net/
Lambda Architecture 出典元:http://lambda-architecture.net/ 既存のバッチ処理集計がここにあたる
Lambda Architecture 出典元:http://lambda-architecture.net/ それに speed layer を追加
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon DynamoDB reverse proxy
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon DynamoDB reverse proxy ここに
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon Kinesis Streams Lambda function Amazon DynamoDB speed layer Amazon DynamoDB reverse proxy
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon Kinesis Streams Lambda function Amazon DynamoDB speed layer Amazon DynamoDB reverse proxy speed layer を追加
None
Kinesis Streams から Lambda で DynamoDB に書き込む
DynamoDB Streams で 次の Lambda を起動させ 1 時間単位、1 日単位で集計 (処理的には
ADD)
日単位の集計は 1 時間単位で集計した データを利用
950 executions/min 75 〜 125ms 225 executions/min 190 〜 425ms
2900 executions/min 0.2 〜 1.0s
活用方法について
活用方法について • 集計データの確認方法 ‣ batch layer の集計データは mysql を参照 ‣
speed layer の集計データは DynamoDB を参照 • 使い分け ‣ batch layer はレポーティング等の正式なデータと して利用 ‣ speed layer はあくまでも速報値や確認の為に利用
活用方法について • 異常検知(耐障害性) • ログの流量変化によって異常検知 • 配信制御 • 直近のデータを考慮して、高精度で制御 •
在庫予測 • 直近のデータを考慮して、予測値を最適化
異常検知(耐障害性) • layer で突き合わせをしてズレを検知 ‣ batch layer の集計と、speed layer の集計を突
き合わせて、大きなズレがある場合は異常とし てエンジニアに通知する • 冗長化 ‣ 別の集計方法(完全に別ではないが)をするこ とで、DynamoDB または Redshift が落ちてい ても完全にログ集計が止まることはない
配信制御 • インプレッションの出し方が単純には いかない商品がある • 例えば 500 インプレッションを 1 週
間で出す場合はなるべく平準化する必 要がある
配信制御
配信制御
これでは駄目で
配信制御
配信制御
平準化する
配信制御 • 出しすぎてもいけないし、期間で平準 化する必要がある
在庫予測 • 在庫が余った場合に、別の商品を掲出 させたいことがある。 • その場合に人手で配信設定をせずとも 直近のデータに基いて掲出量を変更す る。
まとめ • batch layer だけでなく speed layer も導入、活用することで ‣ 掲出確認が迅速に行えるようになった
‣ 在庫の無駄を減らすことが出来る ‣ 2 layer で集計することで、異常検知可 能
ຖͷྉཧΛָ͠Έʹ 5IBOLZPV