Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
広告ログのリアルタイム集計とその活用 / Realtime Ad log aggregati...
Search
wata
July 28, 2017
Technology
2
6.9k
広告ログのリアルタイム集計とその活用 / Realtime Ad log aggregation and utilization
Cookpad Tech Kitchen #9
https://cookpad.connpass.com/event/60831/
wata
July 28, 2017
Tweet
Share
More Decks by wata
See All by wata
クックパッド動画事業開発のチャレンジ / CookpadTV challenge
wata
1
2.3k
クックパッドの動画事業での AWS AppSync 活用事例 / Practical use of AWS AppSync by Cookpad
wata
17
12k
Other Decks in Technology
See All in Technology
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
320
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
130
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
760
Ruby で作る大規模イベントネットワーク構築・運用支援システム TTDB
taketo1113
1
300
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
490
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
9
7.1k
Debugging Edge AI on Zephyr and Lessons Learned
iotengineer22
0
200
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
2
180
SSO方式とJumpアカウント方式の比較と設計方針
yuobayashi
7
670
学習データって増やせばいいんですか?
ftakahashi
2
330
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
250
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Fireside Chat
paigeccino
41
3.7k
Become a Pro
speakerdeck
PRO
31
5.7k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
730
Visualization
eitanlees
150
16k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Documentation Writing (for coders)
carmenintech
76
5.2k
Building an army of robots
kneath
306
46k
Git: the NoSQL Database
bkeepers
PRO
432
66k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Designing for Performance
lara
610
69k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Transcript
ࠂϩάͷϦΞϧλΠϜूܭͱ ͦͷ׆༻ 2017-07-26 Cookpad Tech Kitchen #9 wata
自己紹介 • 渡辺 慎也 • マーケティングプロダクト開発部 • 広告配信基盤周りの整備、開発保守 • やりたいこと
• Rails でアプリを書くよりコンテンツ配信に関わ る、ミドルウェア、インフラ、プロトコルのアー キテクチャを考えることや、改善、安定運用
Agenda • サービス規模 • アーキテクチャ ‣ 以前 ‣ Lambda Architecture
‣ 変更後 • 活用方法について
サービス規模 • インスタンス • c3.xlarge, c4.xlarge で構成 • 5 〜
18 台(Auto Scaling) • ピーク時同時リクエスト数 • 2,000 req/s 以上 ※2017年7月現在
アーキテクチャ
アーキテクチャ HTML レンダリング時に JavaScript で広告配信サーバに リクエストを投げて表示する。 配信 サーバ impression log
click log 302 redirect JSON Ajax
アーキテクチャ reverse proxy app mysql memcached fluentd queue Amazon
Redshift #SJDPMBHF 4USFBNJOH-PBE backup batch %8) Amazon DynamoDB
アーキテクチャ reverse proxy app mysql memcached fluentd queue Amazon
Redshift #SJDPMBHF 4USFBNJOH-PBE backup batch %8) Amazon DynamoDB ログデータがバッチ集計終わって mysql に入るまでに 1 時間ぐらいのラグがあった
もっと早くログが出ているか 確認したい!
そこで
Lambda Architecture
Lambda Architecture 出典元:http://lambda-architecture.net/
Lambda Architecture 出典元:http://lambda-architecture.net/ 既存のバッチ処理集計がここにあたる
Lambda Architecture 出典元:http://lambda-architecture.net/ それに speed layer を追加
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon DynamoDB reverse proxy
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon DynamoDB reverse proxy ここに
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon Kinesis Streams Lambda function Amazon DynamoDB speed layer Amazon DynamoDB reverse proxy
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon Kinesis Streams Lambda function Amazon DynamoDB speed layer Amazon DynamoDB reverse proxy speed layer を追加
None
Kinesis Streams から Lambda で DynamoDB に書き込む
DynamoDB Streams で 次の Lambda を起動させ 1 時間単位、1 日単位で集計 (処理的には
ADD)
日単位の集計は 1 時間単位で集計した データを利用
950 executions/min 75 〜 125ms 225 executions/min 190 〜 425ms
2900 executions/min 0.2 〜 1.0s
活用方法について
活用方法について • 集計データの確認方法 ‣ batch layer の集計データは mysql を参照 ‣
speed layer の集計データは DynamoDB を参照 • 使い分け ‣ batch layer はレポーティング等の正式なデータと して利用 ‣ speed layer はあくまでも速報値や確認の為に利用
活用方法について • 異常検知(耐障害性) • ログの流量変化によって異常検知 • 配信制御 • 直近のデータを考慮して、高精度で制御 •
在庫予測 • 直近のデータを考慮して、予測値を最適化
異常検知(耐障害性) • layer で突き合わせをしてズレを検知 ‣ batch layer の集計と、speed layer の集計を突
き合わせて、大きなズレがある場合は異常とし てエンジニアに通知する • 冗長化 ‣ 別の集計方法(完全に別ではないが)をするこ とで、DynamoDB または Redshift が落ちてい ても完全にログ集計が止まることはない
配信制御 • インプレッションの出し方が単純には いかない商品がある • 例えば 500 インプレッションを 1 週
間で出す場合はなるべく平準化する必 要がある
配信制御
配信制御
これでは駄目で
配信制御
配信制御
平準化する
配信制御 • 出しすぎてもいけないし、期間で平準 化する必要がある
在庫予測 • 在庫が余った場合に、別の商品を掲出 させたいことがある。 • その場合に人手で配信設定をせずとも 直近のデータに基いて掲出量を変更す る。
まとめ • batch layer だけでなく speed layer も導入、活用することで ‣ 掲出確認が迅速に行えるようになった
‣ 在庫の無駄を減らすことが出来る ‣ 2 layer で集計することで、異常検知可 能
ຖͷྉཧΛָ͠Έʹ 5IBOLZPV