Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Neptune で始めるグラフDB
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
やくも
February 27, 2025
0
62
Amazon Neptune で始めるグラフDB
第2回 AWS初心者LT会in札幌
やくも
February 27, 2025
Tweet
Share
More Decks by やくも
See All by やくも
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
120
なんとなくの実装を抜け出す!10分でおさらいするAgentCoreの認証・認可
yakumo
2
150
AWSと生成AIで学ぶ!実行計画の読み解き方とSQLチューニングの実践
yakumo
2
1.1k
AIエージェントを5分で一気におさらい!AIエージェント「構築」元年に備えよう
yakumo
1
160
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
4
3.3k
AIの長期記憶と短期記憶の違いについてAgentCoreを例に深掘ってみた
yakumo
5
540
品川会立ち上げについて
yakumo
1
300
5分で体感するhuman-in-the-loop!AIに丸投げはもうやめよう!
yakumo
1
410
re:Inventで発表された新サービス~AgentCore Evaluations/Policy~
yakumo
2
440
Featured
See All Featured
Statistics for Hackers
jakevdp
799
230k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Building AI with AI
inesmontani
PRO
1
700
How to make the Groovebox
asonas
2
1.9k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
130
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
Accessibility Awareness
sabderemane
0
55
The World Runs on Bad Software
bkeepers
PRO
72
12k
RailsConf 2023
tenderlove
30
1.3k
Transcript
Amazon Neptune で始める グラフDB ビジネスソリューション第一事業部 八雲慎之助 株式会社クレスコ
自己紹介 八雲慎之助(やくも しんのすけ) 所属 株式会社クレスコ 技術 好きなサービス Amazon Neptune
グラフDBとは? 引用 (https://www.imagazine.co.jp/12805-2/) ノード間のリレーションを表現できる
グラフDBとは?(RDSとの比較) Q:「Aさんの孫(子供の子供)は?」 UserId ChildrenID 1 2 2 3 3 4
UserId Name 1 A 2 B 3 C UserID1の孫は誰? A B C 子供はBさん 子供はCさん
主な活用事例 ユーザー同士の友人関係やフォロー関係をグラフ構造で管理。 友達の友達を探す、コミュニティ検出、おすすめ表示 例)X, Instagram, Facebook SNS分析 ユーザーの購入履歴や閲覧履歴から、関係性に基づく商品推薦を行う。 例)Amazon, Netflix
レコメンデーションエンジン Bedrockと組み合わせて、GraphRAGのような高度な応答システムを構 築できる 例)社内文書検索システム ナレッジグラフ
Amazon Neptune とは https://aws.amazon.com/jp/neptune/ • つながりの分析が得意 データの「関係性」を素早く見つけられる。 例)SNS上でおすすめを提示 • 2つのクエリ言語が得意
Gremlin → グラフをたどるための言語(経路検索などに便利) SPARQL → 知識グラフ(情報をネットワーク化して管理)に使う言語 • 高速でスケーラブル 大量のデータを高速に検索できる 大規模なアプリケーションでも対応可能 • 高い可用性と信頼性 自動フェールオーバ 保存時、転送時のデータ暗号化
レコメンド実装 AWS Cloud AWS Cloud Virtual private cloud (VPC) Public
subnet Private subnet Amazon SageMaker AI Amazon Neptune
Gremlinクエリについて • ノード追加 g.addV('person').property('name', 'yakumo').next() • エッジ追加 g.V().hasLabel('person’). has('name','yakumo').addE('LIKE').to(__.V().hasLabel('team’). has('name',
'team 3')).next()
レコメンド実装(共通のLIKEをしているノードを表示) yakumo sakura product 1 product 2 product 3 tanaka
product 4
レコメンド実装(共通のノードから伸びるエッジを確認) yakumo sakura product 1 product 2 product 3 tanaka
product 4
レコメンド実装(yakumoがLIKEしたのは除外) yakumo sakura product 1 product 2 product 3 tanaka
product 4
レコメンド実装 yakumo sakura product 1 product 2 product 3 tanaka
product 4
実際にやってみる!
レコメンド実装 今回投入したデータ
まとめ yakumo sakura MARIO KART 名前ID name 1 yakumo 2
sakura ゲームID Favorite 1 MARIO KART 名前ID Favorite 1 MARIO KART 2 MARIO KART