Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ztfSN_20180719.pdf

Yuhan Yao
July 19, 2018

 ztfSN_20180719.pdf

An introduction of ZTF science on infant supernovae (Nugent et al 2011 and many others).

Yuhan Yao

July 19, 2018
Tweet

More Decks by Yuhan Yao

Other Decks in Science

Transcript

  1. Outline • A brief introduction of supernova (WDSN+CCSN) • Why

    are infant SN important ? • Examples of (i)PTF infant SN WDSN CCSN iPTF14atg, SN2011fe iPTF13ast • Preview: from PTF to ZTF
  2. Outline • A brief introduction of supernova (WDSN+CCSN) • Why

    are infant SN important ? • Examples of (i)PTF infant SN WDSN CCSN iPTF14atg, SN2011fe iPTF13ast • Preview: from PTF to ZTF Type Ia others
  3. Progenitor Channels: Single-degenerate (SD) Double-degenerate (DD) White Dwarf SN (Ia)

    Thermonuclaer runaway: C/O WD researches Mch. See Dan Maoz 2014 for a review. companion star: — main sequence ? — red giant ? accretion: RLOF or Helium star ?
  4. Massive Star / Core-Collapse SN (Ib, Ic, II) The layers

    of a massive, evolved star just prior to core collapse (a) the onion-layered shells of elements undergo fusion, forming an iron core
  5. Massive Star / Core-Collapse SN (Ib, Ic, II) The layers

    of a massive, evolved star just prior to core collapse (a) the onion-layered shells of elements undergo fusion, forming an iron core (b) that reaches Mch and starts to collapse (c) causing infalling material to bounce
  6. Massive Star / Core-Collapse SN (Ib, Ic, II) The layers

    of a massive, evolved star just prior to core collapse (a) the onion-layered shells of elements undergo fusion, forming an iron core (b) that reaches Mch and starts to collapse (c) causing infalling material to bounce (d) and form an outward-propagating shock front. The shock starts to stall,
  7. Massive Star / Core-Collapse SN (Ib, Ic, II) The layers

    of a massive, evolved star just prior to core collapse (a) the onion-layered shells of elements undergo fusion, forming an iron core (b) that reaches Mch and starts to collapse (c) causing infalling material to bounce (d) and form an outward-propagating shock front. The shock starts to stall, (e) but it is re-invigorated. The surrounding material blasted away, (f) leaving only a degenerate remnant.
  8. With pre- and post- HST or LGS-AO images, we can…

    Massive Star / Core-Collapse SN (Ib, Ic, II) SN 2005gl: Type IIn (narrow hydrogen lines); progenitor likely to be a LBV. Gal-Yam & Leonard 2009, Nature hydrogen rich hydrogen free
  9. Outline • A brief introduction of supernova (WDSN+CCSN) • Why

    are infant SN important ? • Examples of (i)PTF infant SN WDSN CCSN iPTF14atg, SN2011fe iPTF13ast • Preview: from PTF to ZTF
  10. Kasen, Daniel. 2010, ApJ For CCSN: 1. shock: X-ray burst

    2. shock: optical/UV radiation 3. 56Ni decay seconds ~ mins hrs ~ days days after Shock breakout through stellar surface layers ~ Theory:
  11. Kasen, Daniel. 2010, ApJ 1. shock: X-ray burst 2. shock:

    optical/UV radiation 3. 56Ni decay For CCSN: For Type Ia: brief & dim ~ seconds ~ mins hrs ~ days days after observable Theory:
  12. Outline • A brief introduction of supernova (WDSN+CCSN) • Why

    are infant SN important ? • Examples of (i)PTF infant SN WDSN CCSN iPTF14atg, SN2011fe iPTF13ast • Preview: from PTF to ZTF
  13. SD: UV pulse, collision between SN ejecta and a companion

    star iPTF14atg Yi Cao et al. 2015 Nature White Dwarf Supernovae -1 dashed lines: Kasen’s analytical models
  14. DD: Non-detection in pre-explosion HST image of SN2011fe in M101

    Strongest limit ever; rule out bright companion. Li et al. 2011 Nature White Dwarf Supernovae -2 SN2011fe HST/ACS image of M101 Right: small circle — 1 sigma astrometry (21mas); big circle — 9 times radius of the small.
  15. Li et al. 2011 Nature White Dwarf Supernovae -2 SN2011fe

    allowed: SD: DD: all consistent rule out red giant ! galactic symbiotic recurrent novae: RS Oph & T CrB helium nova: V445 Pup WD + sub giant or MS, M< 3.5 Msun, e.g: U Sco
  16. DD: Early photometry constrains progenitor radius White Dwarf Supernovae -2

    Nugent et al. 2011 Nature SN2011fe PTF g-band 1st: 11hrs
  17. DD: Early photometry constrains progenitor radius White Dwarf Supernovae -2

    Nugent et al. 2011 Nature SN2011fe PTF g-band 1st: 11hrs rapid evolving oxygen! geometrical dilution Si II Mg II Fe II O I Ca II S II C II
  18. DD: Early photometry constrains progenitor radius White Dwarf Supernovae -2

    Nugent et al. 2011 Nature SN2011fe primary: C/O white dwarf companion: main sequence PTF g-band 1st: 11hrs 0.5 day rapid evolving oxygen! geometrical dilution 1.5 day O I C II
  19. White Dwarf Supernovae -2 SN2011fe Bloom et al. 2012 ApJ

    DD: Early photometry constrains progenitor radius Serendipitous new non-detection limit: 4 hrs after explosion; companion —>
  20. Type IIb; progenitor — W-R star iPTF13ast Core Collapse Supernovae

    Hydrostatic surface (<1012cm) Optically thick wind (~1013cm) Optically thin wind, W-R emission lines WN, WN(h); WC; WO
  21. Type IIb; progenitor — W-R star iPTF13ast Core Collapse Supernovae

    Infant supernovae Optically thick wind (~1013cm) Optically thin wind, W-R-like emission lines Shock breakout. orders of magnitude brighter Wind reacts to SN spectrum instantly; Light-crossing time of wind (hrs) may smear spectral evolution; Flash spectrum gone within days of explosion. WN, WN(h); WC; WO
  22. Flash spectroscopy finds progenitor signatures in ionized wind Type IIb;

    progenitor — W-R star • P48 (discovery engine) ! • —> LBNL (Lawrence Berkeley National Laboratory): read-time • P60 photometry • —> Keck/DEIMOS spectrum ! ~15.5 hr after explosion • —> Wise confirmation • —> Swift / Gemini / EVLA / GALEX trigger • —> multi wavelength observation 0 43 mins 9.8 hrs 19 hrs 1~2 days <4 days 5.8 hrs Avishay Gal-Yam et al. 2014 Nature iPTF13ast Core Collapse Supernovae 5.7 hrs +
  23. iPTF13ast Wind Properties Hα line: R>2 1014cm Line evolution: R<7

    1014cm Mass loss>0.03 solar mass/year Total mass <0.01 solar Core Collapse Supernovae
  24. Outline • A brief introduction of supernova (WDSN+CCSN) • Why

    are infant SN important ? • Examples of (i)PTF infant SN WDSN CCSN iPTF14atg, SN2011fe iPTF13ast • Preview: from PTF to ZTF See also Yaron et al. 2017, Nature of SN2013fs
  25. SEDM on P60 Spectral Energy Distribution Machine Blagorodnova et al.

    2017 Integral Field Unit (IFU) spectrograph (R~100) “Rainbow Camera” (RC): ugri Flash spectroscopy: getting smaller W-R stars
  26. ULTRASAT Ultraviolet Transient Astronomy Satellite US + Isreal 2021/2022, NUV

    220-280nm, 250 square degree small (~1-3m), light(~100kg), cheap (~$100M) collect early UV light curves of CCSN+WDSN, measure the radii (or orbit separation in the case of SD Ia) and surface composition
  27. Take-home Messages • For WDSN: provides evidence for both SD

    (iPTF14atg) and DD (SN2011fe) progenitor systems by rapid UV & optical follow up. • CCSN: the first flash spectroscopy of H-deficient CCSN (iPTF13ast), confirm progenitor to be a W-R star. PTF has opened/revolutionized the field of infant supernova. ZTF will step forward to extend these single-objects to a large sample of infant supernovae, stay tuned ! Thanks for listening !