Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Pydantic x Database API:turu-pyの開発

yassun7010
September 27, 2024

Pydantic x Database API:turu-pyの開発

PyCon JP 2024 で登壇した、データ分析基盤を開発しているチームで Snowflake を安全に利用するために、 Turu-py というライブラリを開発した紹介のスライドです。

yassun7010

September 27, 2024
Tweet

Other Decks in Programming

Transcript

  1. Snowflake - SaaS型データプラットフォーム - メリット • ストレージとコンピューティングが分離・個別にスケール可能 • パフォーマンスが優れている •

    AI に向けた機能も豊富 デメリット • ローカル開発ができないため、自動テストに工夫が必要 • 独自の機能があるため ORM で利用できない機能も多い
  2. ライブラリ開発の方針(ざっくり) • 静的解析の恩恵を受け、変更に強いチーム開発がしたい • コードの変更による影響範囲を自動検出。ロバストな開発によるチームの生産性の向上 • チームの学習コストを下げたい(よく知られた UI) • SQL

    のクエリを知っていれば OK • 自動テストを簡単に書けるようにしたい • Mock 機能をライブラリ側で提供 • 複雑な機能は外部ライブラリに頼りたい • Pydantic を利用。省エネは大事 データサイエンティストの多いチーム。みんな SQL が書けた。 分析が主な用途だったので 複雑な SQL 文 を書けることが重要。
  3. 振り返り)ここが面白かった クラスでテーブルを表現する場合、直感的には Class:テーブル Instance:レコード ただし、 __init__ の型定義は上手くできない ※ 現状の dataclass_transform

    という仕組みで コンストラクタ引数の型を指定できない Class / Instance プロパティ型を別に定義可能 SQLAlchemy などで実装実績あり User.id ⇨ Column[int] user.id ⇨ int クラスプロパティと インスタンスプロパティで 別の型を指定可能 コンストラクタは Field[int] を要求
  4. 振り返り)こんな機能があったらよかった 1. Generic な型を既定クラスにできれば… 2. dataclass_transform の機能不足 dataclass 風のクラスを作る機能。 コンストラクタ引数の型定義のために

    converter が欲しかった (PEP 712 など 関連する議論 あり。前のスライドの問題) 3. プロパティを動的に型推論できれば… 写像や JOIN の結果を 型で表現できた… Proxy +追加機能で SQLの式を 定義できた…
  5. コンセプトは Pydantic x Database API execute (query run) + map

    (results validation) ⇨ execute_map メソッドを追加
  6. ライブラリ開発の方針 • 静的解析の恩恵を受け、変更に強いチーム開発がしたい • コードの変更による影響範囲を自動検出。ロバストな開発によるチームの生産性の向上 • チームの学習コストを下げたい(よく知られた UI) • SQL

    のクエリを知っていれば OK • PEP 249: Python Database API Specification v2.0 • 複雑な機能は外部ライブラリに頼りたい • Pydantic ・既存のDBクライアントを利用。省エネは大事 • 自動テストを簡単に書けるようにしたい • Mock 機能をライブラリ側で提供
  7. PEP 249:Python Database API Specification v2.0 データベースクライアントが実装すべき API ・非常に枯れている(1999年〜) ・異なる

    DB を同じインターフェースで扱える ・複数のデータベースサポートが容易 ・学習コストが少ない これを前提にすると…
  8. 多くの PEP 249 に従った Python ライブラリが存在 PEP 249 に従った typing.Protocol

    を定義して 各lib の conn を受け取れば楽できないか PostgreSQL:psycopg2 MySQL:mysql-connector-python SQLite:sqlite3 Snowflake:snowflake-connector-python DuckDB:duckdb BigQuery:google-cloud-bigquery データベースとのやり取りは既存のライブラリにお任せ
  9. Protocol とは ライブラリ間の依存関係はないから継承より Protocol が適切 どの DB クライアントも PEP に従っているから大丈夫

    検討理由 Protocol: 継承ではなく ダックタイピングによる型安全 Protocol の利用イメージ 各ライブラリが提供する Connection クラスを そのまま渡せば動くかな?
  10. Protocol は上手くいかなかった 定義が厳密に一致していないといけない だがしかし! • 引数名が微妙に違う(parameters ≠ params) • 引数の型が微妙に違う(

    Sequence ≠ list ) • 各ライブラリには独自の追加引数があったり… 本来ならば PEP 249 のメソッド仕様の一部
  11. Protocol は上手くいかなかった 定義が厳密に一致していないといけない だがしかし! • 引数名が微妙に違う(parameters ≠ params) • 引数の型が微妙に違う(

    Sequence ≠ list ) • 各ライブラリには独自の追加引数があったり… 本来ならば 検討したすべてのライブラリが不一致 結局ラッパークラスを各 DB ごとに定義
  12. NO! 時代はデータベース SaaS 時代 分散トランザクション・AI 機能・ベクトルデータの対応など SQL で独自機能が加わったデータベースの SaaS で利益が出せる時代

    PostgreSQL・MySQL・SQLite のようなコンテナデータベースと異なり 複数人が同時に自動テストを行うことは困難 クラウドネイティブのデータベースは自動テストしにくい 独自の方言を持つクラウドネイティブ DB ビジネスの発展
  13. チームでの利用例:レコード機能 + モック クエリの正しさは実際のデータベースで動作確認 したいが Snowflake はローカル上で実行できない 妥協案として テストデータを簡単に作れる 方針を採用

    ① ローカル環境時に dev 環境の Snowflake を実行 ENABLE_RECORDING 環境変数が true の場合のみ Git レポジトリ上の自動テストデータ を更新 ③ 自動テストでは記録したデータを再生
  14. おまけ: 懲りずに型安全なクエリビルダ snowman-py ターゲットDBを Snowflake に限定 INSERT / UPDATE を最初の標的

    • 単一テーブルで完結できる • 定型のクエリ記述量が多い 型安全にできる機能を徐々に拡大中