Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pathologies of Neural Models Make Interpretatio...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yasufumi Taniguchi
December 09, 2018
Research
1
1.8k
Pathologies of Neural Models Make Interpretations Difficult
Yasufumi Taniguchi
December 09, 2018
Tweet
Share
More Decks by Yasufumi Taniguchi
See All by Yasufumi Taniguchi
AllenNLPを使った開発
yasufumy
0
2.3k
Making Neural QA as Simple as Possible but not Simpler
yasufumy
0
98
Other Decks in Research
See All in Research
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
230
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
470
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
290
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
660
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.9k
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
280
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
都市交通マスタープランとその後への期待@熊本商工会議所・熊本経済同友会
trafficbrain
0
120
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
Become a Pro
speakerdeck
PRO
31
5.8k
Building AI with AI
inesmontani
PRO
1
700
4 Signs Your Business is Dying
shpigford
187
22k
Designing for Timeless Needs
cassininazir
0
130
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
First, design no harm
axbom
PRO
2
1.1k
エンジニアに許された特別な時間の終わり
watany
106
230k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
170
Transcript
ൃදऀ ୩ޱହ࢙ ҟৗͳڍಈ
!2 Pathological behavior ࣭จ͕did͚ͩͰ Ϟσϧͷग़ྗಉ͡ ֬ߴ͍
֓ཁ w NLPʹ͓͚ΔχϡʔϥϧϞσϧͷղੳख๏ΛఏҊ w Ϟσϧ͕λεΫΛղ্͘Ͱॏཁͳ୯ޠΛநग़͢Δख๏ w நग़͞Εͨ୯ޠਓʹͱͬͯҙຯෆ໌ w ҰํͰϞσϧநग़୯ޠͰਖ਼͘͠༧ଌ(Pathology) w
ղੳ݁Ռʹجͮ͘ਖ਼ଇԽ߲ΛఏҊ w ਖ਼ଇԽ߲ʹΑͬͯϞσϧͷղऍੑ্ !3
࣍ Ϟσϧղੳͷطଘख๏ ఏҊख๏ ࣮ݧ ·ͱΊ !4
Ϟσϧղੳͷطଘख๏
Ϟσϧղੳͷطଘख๏ !6 Adversarial Example Ϟσϧʹਓͷײʹ͢ΔڍಈΛͤ͞Δαϯϓϧ NLPͷλεΫ ओʹQAλεΫ Ͱύλʔϯ ਓʹͱͬͯҙຯͷͳ͍มߋ͕ɺϞσϧͷग़ྗΛܹมͤ͞Δέʔε
ਓʹͱͬͯ໌Β͔ͳมߋͰɺϞσϧ͕ग़ྗΛม͑ͳ͍έʔε
ग़ྗ͕ܹม͢Δέʔε !7 Jia et al., 2017 ΫΥʔλʔόοΫͷྸʹ͍ͭͯͷ จॻʹΫΥʔλʔόοΫͷഎ൪߸ʹ ؔ͢ΔจΛՃ Ϟσϧޡ
ग़ྗΛม͑ͳ͍έʔε !8 Mudrakarta et al., 2018 ݐͷന͍ϨϯΨ͕ରশ͔ʁ spherical (ٿঢ়ͷ) ݐͷന͍ϨϯΨ͕ٿঢ়͔ʁ
࣭จͷҙຯมԽ Ϟσϧͷ༧ଌෆม
2. ఏҊख๏
*OQVU3FEVDUJPO • ॏཁͰͳ͍୯ޠΛೖྗ͔ΒΓɺϞσϧͷڍಈΛੳ • Ϟσϧ͕ਖ਼͍͠ग़ྗΛ͢ΔͨΊʹඞཁͳ࠷୯ޠ (ॏཁ ୯ޠ) • Adversarial ExampleϞσϧʹͱͬͯͷॏཁ୯ޠʹண
*OQVU3FEVDUJPO !11 x y Ϟσϧͷ༧ଌ f( ⋅ ) χϡʔϥϧϞσϧ ೖྗܥྻ
(จจॻ) xi ೖྗܥྻͷ͋Δཁૉ (୯ޠ) g(xi |x) = f(y|x) − f(y|x−i ) ͋Δ୯ޠ ʹର͢Δ ॏཁΛఆٛ xi g i൪ͷ୯ޠΛফͨ͠ೖྗ
*OQVU3FEVDUJPO !12 g(xcontest |x) = f(y|x) − f(y|x−contest ) What
company won free advertisement due to QuickBooks contest ? What company won free advertisement due to QuickBooks contest ? g͕େ͖͚Εɺcontest͕ॏཁͳ୯ޠͱͳΔ Ϟσϧͷग़ྗʹେ͖͘د༩͍ͯ͠ΔͨΊ
*OQVU3FEVDUJPO !13 g(xi |x) = f(y|x) − f(y|x−i ) ॏཁͷ͍୯ޠΛআ
y͕มԽ͠ͳ͍Α͏ʹɺg͕࠷খͱͳΔ୯ޠiΛআ ͍ͯ͘͠
3. ࣮ݧ
ղੳͷରλεΫ 1. SQuAD w จॻͱ࣭จ͕༩͑ΒΕΔˠ࣭จʹରͯ͠Input Reduction w จॻ͔ΒղΛநग़͢ΔλεΫ 2. SNLI
w จ͕༩͑ΒΕΔˠͭͷจʹରͯ͠Input Reduction w จͷؔΛਪఆ͢ΔλεΫ 3. VQA w ը૾ͱ࣭จ͕༩͑ΒΕΔˠ࣭จʹରͯ͠Input Reduction w ղΛੜ͢ΔλεΫ !15
࣮ݧ༰ Input Reduction w Ϟσϧ͕ਖ਼͍͠ग़ྗΛ͢ΔαϯϓϧΛରʹ࣮ݧ w Input ReductionΛద༻ͨ͠ೖྗ(Reduced)ʹର͢ΔਓखධՁ w ReducedͱϥϯμϜʹ୯ޠΛམͱͨ͠߹(Random)ͷࠩҟͷධՁ
Regularization on Reduced Inputs w Input ReductionʹΑΔϞσϧͷPathological behaviorΛܰݮ͢Δਖ਼ଇԽ߲ ޙड़ ͷಋೖ !16
Reducedʹର͢ΔਓखධՁ !17 Reducedʹରͯ͠ ਓਖ਼͍͠༧ଌΛͰ ͖ͳ͍ w Reducedʹର͢Δਓͷਖ਼ w Ϟσϧͷਖ਼͕ͷαϯϓϧΛ༻
Reducedʹର͢ΔਓखධՁ !18 w ReducedͱRandomͷͲͪΒ͕ࣗવͳจ͔ w vs. Randomfifty-fiftyͱׂ͑ͨ߹ Reducedਓʹͱͬ ͯRandomͱಉ͡
Reducedͷࣄྫ !19 ʮͲ͜Ͱ࿅शͨ͠ ͔ʯΛฉ͔Ε͍ͯ ΔͷΘ͔Δ͕ɺ ʮͲͷνʔϜʯ͔ Θ͔Βͳ͍
Reducedͷฏۉ୯ޠ ͭͷλεΫͱɺ ਖ਼͢Δͷʹඞཁͳ୯ޠฏۉd
Reducedʹର͢ΔϞσϧͷ֬ !21 • Input Reductionͷద༻લޙͰϞσϧͷ ֬ʹมԽ΄ͱΜͲͳ͍ • ϞσϧӶ͍ϐʔΫΛ࣋ͭΑ͏ͳ Λֶश͍ͯ͠Δ͜ͱ͕ݪҼ
ਖ਼ଇԽ߲ͷಋೖ !22 ∑ (x,y)∈(X,Y) log(f(y|x)) + λ∑ ¯ x∈ ¯
X H(f(y| ¯ x)) Reducedʹରͯ͠ਖ਼͍͠yΛ ग़ྗ͠ʹ͘͘͢Δ ௨ৗͷతؔ Reducedαϯϓϧ௨ৗͷతؔΛֶͬͯशͨ͠ ϞσϧΛ༻͍ͯੜ
ਖ਼ଇԽ߲ͷޮՌ !23 • Ϟσϧͷਫ਼͕ඍ૿ • ਖ਼ʹඞཁͳ୯ޠ ͕૿Ճ
ਖ਼ଇԽ߲ͷޮՌ !24 ਓखධՁͷਫ਼্ Input Reductionͨ͠ೖྗ ͷղऍੑ্͕
ਖ਼ଇԽͨ͠Ϟσϧͷࣄྫ !25 Input Reductionͨ͠ೖྗ͕ਓͰ ղऍՄೳʹͳͬͨ
·ͱΊ ఏҊख๏ w NLPͷχϡʔϥϧϞσϧղੳख๏ͱͯ͠ɺInput ReductionΛఏҊ w ༧ଌʹد༩͠ͳ͍୯ޠΛೖྗ͔ΒΓɺϞσϧΛղੳ ࣮ݧ݁Ռ w ఏҊख๏Λద༻ͨ͠ೖྗਓʹͱͬͯҙຯෆ໌
w ҰํͰχϡʔϥϧϞσϧਖ਼͍͠༧ଌΛߦ͏ w ਖ਼ଇԽ߲Λಋೖ͢ΔͱϞσϧͷڍಈվળ !26