Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pathologies of Neural Models Make Interpretatio...
Search
Yasufumi Taniguchi
December 09, 2018
Research
1
1.8k
Pathologies of Neural Models Make Interpretations Difficult
Yasufumi Taniguchi
December 09, 2018
Tweet
Share
More Decks by Yasufumi Taniguchi
See All by Yasufumi Taniguchi
AllenNLPを使った開発
yasufumy
0
2.3k
Making Neural QA as Simple as Possible but not Simpler
yasufumy
0
98
Other Decks in Research
See All in Research
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.8k
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
320
データサイエンティストの業務変化
datascientistsociety
PRO
0
150
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
150
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
440
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
450
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
390
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
230
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.1k
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
190
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
150
Featured
See All Featured
How GitHub (no longer) Works
holman
316
140k
First, design no harm
axbom
PRO
2
1.1k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
88
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
420
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
420
Thoughts on Productivity
jonyablonski
74
5k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Claude Code のすすめ
schroneko
67
210k
The untapped power of vector embeddings
frankvandijk
1
1.5k
A Tale of Four Properties
chriscoyier
162
24k
Agile that works and the tools we love
rasmusluckow
331
21k
Transcript
ൃදऀ ୩ޱହ࢙ ҟৗͳڍಈ
!2 Pathological behavior ࣭จ͕did͚ͩͰ Ϟσϧͷग़ྗಉ͡ ֬ߴ͍
֓ཁ w NLPʹ͓͚ΔχϡʔϥϧϞσϧͷղੳख๏ΛఏҊ w Ϟσϧ͕λεΫΛղ্͘Ͱॏཁͳ୯ޠΛநग़͢Δख๏ w நग़͞Εͨ୯ޠਓʹͱͬͯҙຯෆ໌ w ҰํͰϞσϧநग़୯ޠͰਖ਼͘͠༧ଌ(Pathology) w
ղੳ݁Ռʹجͮ͘ਖ਼ଇԽ߲ΛఏҊ w ਖ਼ଇԽ߲ʹΑͬͯϞσϧͷղऍੑ্ !3
࣍ Ϟσϧղੳͷطଘख๏ ఏҊख๏ ࣮ݧ ·ͱΊ !4
Ϟσϧղੳͷطଘख๏
Ϟσϧղੳͷطଘख๏ !6 Adversarial Example Ϟσϧʹਓͷײʹ͢ΔڍಈΛͤ͞Δαϯϓϧ NLPͷλεΫ ओʹQAλεΫ Ͱύλʔϯ ਓʹͱͬͯҙຯͷͳ͍มߋ͕ɺϞσϧͷग़ྗΛܹมͤ͞Δέʔε
ਓʹͱͬͯ໌Β͔ͳมߋͰɺϞσϧ͕ग़ྗΛม͑ͳ͍έʔε
ग़ྗ͕ܹม͢Δέʔε !7 Jia et al., 2017 ΫΥʔλʔόοΫͷྸʹ͍ͭͯͷ จॻʹΫΥʔλʔόοΫͷഎ൪߸ʹ ؔ͢ΔจΛՃ Ϟσϧޡ
ग़ྗΛม͑ͳ͍έʔε !8 Mudrakarta et al., 2018 ݐͷന͍ϨϯΨ͕ରশ͔ʁ spherical (ٿঢ়ͷ) ݐͷന͍ϨϯΨ͕ٿঢ়͔ʁ
࣭จͷҙຯมԽ Ϟσϧͷ༧ଌෆม
2. ఏҊख๏
*OQVU3FEVDUJPO • ॏཁͰͳ͍୯ޠΛೖྗ͔ΒΓɺϞσϧͷڍಈΛੳ • Ϟσϧ͕ਖ਼͍͠ग़ྗΛ͢ΔͨΊʹඞཁͳ࠷୯ޠ (ॏཁ ୯ޠ) • Adversarial ExampleϞσϧʹͱͬͯͷॏཁ୯ޠʹண
*OQVU3FEVDUJPO !11 x y Ϟσϧͷ༧ଌ f( ⋅ ) χϡʔϥϧϞσϧ ೖྗܥྻ
(จจॻ) xi ೖྗܥྻͷ͋Δཁૉ (୯ޠ) g(xi |x) = f(y|x) − f(y|x−i ) ͋Δ୯ޠ ʹର͢Δ ॏཁΛఆٛ xi g i൪ͷ୯ޠΛফͨ͠ೖྗ
*OQVU3FEVDUJPO !12 g(xcontest |x) = f(y|x) − f(y|x−contest ) What
company won free advertisement due to QuickBooks contest ? What company won free advertisement due to QuickBooks contest ? g͕େ͖͚Εɺcontest͕ॏཁͳ୯ޠͱͳΔ Ϟσϧͷग़ྗʹେ͖͘د༩͍ͯ͠ΔͨΊ
*OQVU3FEVDUJPO !13 g(xi |x) = f(y|x) − f(y|x−i ) ॏཁͷ͍୯ޠΛআ
y͕มԽ͠ͳ͍Α͏ʹɺg͕࠷খͱͳΔ୯ޠiΛআ ͍ͯ͘͠
3. ࣮ݧ
ղੳͷରλεΫ 1. SQuAD w จॻͱ࣭จ͕༩͑ΒΕΔˠ࣭จʹରͯ͠Input Reduction w จॻ͔ΒղΛநग़͢ΔλεΫ 2. SNLI
w จ͕༩͑ΒΕΔˠͭͷจʹରͯ͠Input Reduction w จͷؔΛਪఆ͢ΔλεΫ 3. VQA w ը૾ͱ࣭จ͕༩͑ΒΕΔˠ࣭จʹରͯ͠Input Reduction w ղΛੜ͢ΔλεΫ !15
࣮ݧ༰ Input Reduction w Ϟσϧ͕ਖ਼͍͠ग़ྗΛ͢ΔαϯϓϧΛରʹ࣮ݧ w Input ReductionΛద༻ͨ͠ೖྗ(Reduced)ʹର͢ΔਓखධՁ w ReducedͱϥϯμϜʹ୯ޠΛམͱͨ͠߹(Random)ͷࠩҟͷධՁ
Regularization on Reduced Inputs w Input ReductionʹΑΔϞσϧͷPathological behaviorΛܰݮ͢Δਖ਼ଇԽ߲ ޙड़ ͷಋೖ !16
Reducedʹର͢ΔਓखධՁ !17 Reducedʹରͯ͠ ਓਖ਼͍͠༧ଌΛͰ ͖ͳ͍ w Reducedʹର͢Δਓͷਖ਼ w Ϟσϧͷਖ਼͕ͷαϯϓϧΛ༻
Reducedʹର͢ΔਓखධՁ !18 w ReducedͱRandomͷͲͪΒ͕ࣗવͳจ͔ w vs. Randomfifty-fiftyͱׂ͑ͨ߹ Reducedਓʹͱͬ ͯRandomͱಉ͡
Reducedͷࣄྫ !19 ʮͲ͜Ͱ࿅शͨ͠ ͔ʯΛฉ͔Ε͍ͯ ΔͷΘ͔Δ͕ɺ ʮͲͷνʔϜʯ͔ Θ͔Βͳ͍
Reducedͷฏۉ୯ޠ ͭͷλεΫͱɺ ਖ਼͢Δͷʹඞཁͳ୯ޠฏۉd
Reducedʹର͢ΔϞσϧͷ֬ !21 • Input Reductionͷద༻લޙͰϞσϧͷ ֬ʹมԽ΄ͱΜͲͳ͍ • ϞσϧӶ͍ϐʔΫΛ࣋ͭΑ͏ͳ Λֶश͍ͯ͠Δ͜ͱ͕ݪҼ
ਖ਼ଇԽ߲ͷಋೖ !22 ∑ (x,y)∈(X,Y) log(f(y|x)) + λ∑ ¯ x∈ ¯
X H(f(y| ¯ x)) Reducedʹରͯ͠ਖ਼͍͠yΛ ग़ྗ͠ʹ͘͘͢Δ ௨ৗͷతؔ Reducedαϯϓϧ௨ৗͷతؔΛֶͬͯशͨ͠ ϞσϧΛ༻͍ͯੜ
ਖ਼ଇԽ߲ͷޮՌ !23 • Ϟσϧͷਫ਼͕ඍ૿ • ਖ਼ʹඞཁͳ୯ޠ ͕૿Ճ
ਖ਼ଇԽ߲ͷޮՌ !24 ਓखධՁͷਫ਼্ Input Reductionͨ͠ೖྗ ͷղऍੑ্͕
ਖ਼ଇԽͨ͠Ϟσϧͷࣄྫ !25 Input Reductionͨ͠ೖྗ͕ਓͰ ղऍՄೳʹͳͬͨ
·ͱΊ ఏҊख๏ w NLPͷχϡʔϥϧϞσϧղੳख๏ͱͯ͠ɺInput ReductionΛఏҊ w ༧ଌʹد༩͠ͳ͍୯ޠΛೖྗ͔ΒΓɺϞσϧΛղੳ ࣮ݧ݁Ռ w ఏҊख๏Λద༻ͨ͠ೖྗਓʹͱͬͯҙຯෆ໌
w ҰํͰχϡʔϥϧϞσϧਖ਼͍͠༧ଌΛߦ͏ w ਖ਼ଇԽ߲Λಋೖ͢ΔͱϞσϧͷڍಈվળ !26