Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pathologies of Neural Models Make Interpretatio...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yasufumi Taniguchi
December 09, 2018
Research
1
1.8k
Pathologies of Neural Models Make Interpretations Difficult
Yasufumi Taniguchi
December 09, 2018
Tweet
Share
More Decks by Yasufumi Taniguchi
See All by Yasufumi Taniguchi
AllenNLPを使った開発
yasufumy
0
2.3k
Making Neural QA as Simple as Possible but not Simpler
yasufumy
0
98
Other Decks in Research
See All in Research
LiDARセキュリティ最前線(2025年)
kentaroy47
0
130
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
290
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
湯村研究室の紹介2025 / yumulab2025
yumulab
0
300
音声感情認識技術の進展と展望
nagase
0
470
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
760
世界モデルにおける分布外データ対応の方法論
koukyo1994
7
1.5k
財務諸表監査のための逐次検定
masakat0
1
250
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
470
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.3k
LLMアプリケーションの透明性について
fufufukakaka
0
140
Featured
See All Featured
Statistics for Hackers
jakevdp
799
230k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Paper Plane
katiecoart
PRO
0
46k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
430
Facilitating Awesome Meetings
lara
57
6.8k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Transcript
ൃදऀ ୩ޱହ࢙ ҟৗͳڍಈ
!2 Pathological behavior ࣭จ͕did͚ͩͰ Ϟσϧͷग़ྗಉ͡ ֬ߴ͍
֓ཁ w NLPʹ͓͚ΔχϡʔϥϧϞσϧͷղੳख๏ΛఏҊ w Ϟσϧ͕λεΫΛղ্͘Ͱॏཁͳ୯ޠΛநग़͢Δख๏ w நग़͞Εͨ୯ޠਓʹͱͬͯҙຯෆ໌ w ҰํͰϞσϧநग़୯ޠͰਖ਼͘͠༧ଌ(Pathology) w
ղੳ݁Ռʹجͮ͘ਖ਼ଇԽ߲ΛఏҊ w ਖ਼ଇԽ߲ʹΑͬͯϞσϧͷղऍੑ্ !3
࣍ Ϟσϧղੳͷطଘख๏ ఏҊख๏ ࣮ݧ ·ͱΊ !4
Ϟσϧղੳͷطଘख๏
Ϟσϧղੳͷطଘख๏ !6 Adversarial Example Ϟσϧʹਓͷײʹ͢ΔڍಈΛͤ͞Δαϯϓϧ NLPͷλεΫ ओʹQAλεΫ Ͱύλʔϯ ਓʹͱͬͯҙຯͷͳ͍มߋ͕ɺϞσϧͷग़ྗΛܹมͤ͞Δέʔε
ਓʹͱͬͯ໌Β͔ͳมߋͰɺϞσϧ͕ग़ྗΛม͑ͳ͍έʔε
ग़ྗ͕ܹม͢Δέʔε !7 Jia et al., 2017 ΫΥʔλʔόοΫͷྸʹ͍ͭͯͷ จॻʹΫΥʔλʔόοΫͷഎ൪߸ʹ ؔ͢ΔจΛՃ Ϟσϧޡ
ग़ྗΛม͑ͳ͍έʔε !8 Mudrakarta et al., 2018 ݐͷന͍ϨϯΨ͕ରশ͔ʁ spherical (ٿঢ়ͷ) ݐͷന͍ϨϯΨ͕ٿঢ়͔ʁ
࣭จͷҙຯมԽ Ϟσϧͷ༧ଌෆม
2. ఏҊख๏
*OQVU3FEVDUJPO • ॏཁͰͳ͍୯ޠΛೖྗ͔ΒΓɺϞσϧͷڍಈΛੳ • Ϟσϧ͕ਖ਼͍͠ग़ྗΛ͢ΔͨΊʹඞཁͳ࠷୯ޠ (ॏཁ ୯ޠ) • Adversarial ExampleϞσϧʹͱͬͯͷॏཁ୯ޠʹண
*OQVU3FEVDUJPO !11 x y Ϟσϧͷ༧ଌ f( ⋅ ) χϡʔϥϧϞσϧ ೖྗܥྻ
(จจॻ) xi ೖྗܥྻͷ͋Δཁૉ (୯ޠ) g(xi |x) = f(y|x) − f(y|x−i ) ͋Δ୯ޠ ʹର͢Δ ॏཁΛఆٛ xi g i൪ͷ୯ޠΛফͨ͠ೖྗ
*OQVU3FEVDUJPO !12 g(xcontest |x) = f(y|x) − f(y|x−contest ) What
company won free advertisement due to QuickBooks contest ? What company won free advertisement due to QuickBooks contest ? g͕େ͖͚Εɺcontest͕ॏཁͳ୯ޠͱͳΔ Ϟσϧͷग़ྗʹେ͖͘د༩͍ͯ͠ΔͨΊ
*OQVU3FEVDUJPO !13 g(xi |x) = f(y|x) − f(y|x−i ) ॏཁͷ͍୯ޠΛআ
y͕มԽ͠ͳ͍Α͏ʹɺg͕࠷খͱͳΔ୯ޠiΛআ ͍ͯ͘͠
3. ࣮ݧ
ղੳͷରλεΫ 1. SQuAD w จॻͱ࣭จ͕༩͑ΒΕΔˠ࣭จʹରͯ͠Input Reduction w จॻ͔ΒղΛநग़͢ΔλεΫ 2. SNLI
w จ͕༩͑ΒΕΔˠͭͷจʹରͯ͠Input Reduction w จͷؔΛਪఆ͢ΔλεΫ 3. VQA w ը૾ͱ࣭จ͕༩͑ΒΕΔˠ࣭จʹରͯ͠Input Reduction w ղΛੜ͢ΔλεΫ !15
࣮ݧ༰ Input Reduction w Ϟσϧ͕ਖ਼͍͠ग़ྗΛ͢ΔαϯϓϧΛରʹ࣮ݧ w Input ReductionΛద༻ͨ͠ೖྗ(Reduced)ʹର͢ΔਓखධՁ w ReducedͱϥϯμϜʹ୯ޠΛམͱͨ͠߹(Random)ͷࠩҟͷධՁ
Regularization on Reduced Inputs w Input ReductionʹΑΔϞσϧͷPathological behaviorΛܰݮ͢Δਖ਼ଇԽ߲ ޙड़ ͷಋೖ !16
Reducedʹର͢ΔਓखධՁ !17 Reducedʹରͯ͠ ਓਖ਼͍͠༧ଌΛͰ ͖ͳ͍ w Reducedʹର͢Δਓͷਖ਼ w Ϟσϧͷਖ਼͕ͷαϯϓϧΛ༻
Reducedʹର͢ΔਓखධՁ !18 w ReducedͱRandomͷͲͪΒ͕ࣗવͳจ͔ w vs. Randomfifty-fiftyͱׂ͑ͨ߹ Reducedਓʹͱͬ ͯRandomͱಉ͡
Reducedͷࣄྫ !19 ʮͲ͜Ͱ࿅शͨ͠ ͔ʯΛฉ͔Ε͍ͯ ΔͷΘ͔Δ͕ɺ ʮͲͷνʔϜʯ͔ Θ͔Βͳ͍
Reducedͷฏۉ୯ޠ ͭͷλεΫͱɺ ਖ਼͢Δͷʹඞཁͳ୯ޠฏۉd
Reducedʹର͢ΔϞσϧͷ֬ !21 • Input Reductionͷద༻લޙͰϞσϧͷ ֬ʹมԽ΄ͱΜͲͳ͍ • ϞσϧӶ͍ϐʔΫΛ࣋ͭΑ͏ͳ Λֶश͍ͯ͠Δ͜ͱ͕ݪҼ
ਖ਼ଇԽ߲ͷಋೖ !22 ∑ (x,y)∈(X,Y) log(f(y|x)) + λ∑ ¯ x∈ ¯
X H(f(y| ¯ x)) Reducedʹରͯ͠ਖ਼͍͠yΛ ग़ྗ͠ʹ͘͘͢Δ ௨ৗͷతؔ Reducedαϯϓϧ௨ৗͷతؔΛֶͬͯशͨ͠ ϞσϧΛ༻͍ͯੜ
ਖ਼ଇԽ߲ͷޮՌ !23 • Ϟσϧͷਫ਼͕ඍ૿ • ਖ਼ʹඞཁͳ୯ޠ ͕૿Ճ
ਖ਼ଇԽ߲ͷޮՌ !24 ਓखධՁͷਫ਼্ Input Reductionͨ͠ೖྗ ͷղऍੑ্͕
ਖ਼ଇԽͨ͠Ϟσϧͷࣄྫ !25 Input Reductionͨ͠ೖྗ͕ਓͰ ղऍՄೳʹͳͬͨ
·ͱΊ ఏҊख๏ w NLPͷχϡʔϥϧϞσϧղੳख๏ͱͯ͠ɺInput ReductionΛఏҊ w ༧ଌʹد༩͠ͳ͍୯ޠΛೖྗ͔ΒΓɺϞσϧΛղੳ ࣮ݧ݁Ռ w ఏҊख๏Λద༻ͨ͠ೖྗਓʹͱͬͯҙຯෆ໌
w ҰํͰχϡʔϥϧϞσϧਖ਼͍͠༧ଌΛߦ͏ w ਖ਼ଇԽ߲Λಋೖ͢ΔͱϞσϧͷڍಈվળ !26