Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Modeling DB @ Cloud Firestore
Search
Yatima-Kagurazaka
December 16, 2017
Technology
2
770
Modeling DB @ Cloud Firestore
push ID: auto ID in Realtime Database
Yatima-Kagurazaka
December 16, 2017
Tweet
Share
More Decks by Yatima-Kagurazaka
See All by Yatima-Kagurazaka
ChromeOS, Firebase - Google I\O ‘18
yatima
0
530
スマートなcronを考案した / lazy cron
yatima
1
5.6k
Firebaseざっくり / GDG Tokyo New Year Seminar 2018
yatima
0
930
Firestoreで負荷試験 (Loadroid by Rocro) / Firebase.yebisu #1
yatima
1
770
大半のウェブサービス/アプリは,Firebaseなら簡単で安いですよ
yatima
2
3.4k
Realtime Databaseのベストプラクティスっぽいやつ
yatima
0
700
Other Decks in Technology
See All in Technology
書籍『実践 Apache Iceberg』の歩き方
ishikawa_satoru
0
390
Retrospectiveを振り返ろう
nakasho
0
140
アノテーション作業書作成のGood Practice
cierpa0905
PRO
1
350
Observability — Extending Into Incident Response
nari_ex
1
660
アウトプットから始めるOSSコントリビューション 〜eslint-plugin-vueの場合〜 #vuefes
bengo4com
3
1.9k
様々なファイルシステム
sat
PRO
0
280
個人でデジタル庁の デザインシステムをVue.jsで 作っている話
nishiharatsubasa
3
5.3k
AI連携の新常識! 話題のMCPをはじめて学ぶ!
makoakiba
0
170
20251029_Cursor Meetup Tokyo #02_MK_「あなたのAI、私のシェル」 - プロンプトインジェクションによるエージェントのハイジャック
mk0721
PRO
6
2.2k
プロダクト開発と社内データ活用での、BI×AIの現在地 / Data_Findy
sansan_randd
1
720
20251027_findyさん_音声エージェントLT
almondo_event
2
520
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
400
Featured
See All Featured
How GitHub (no longer) Works
holman
315
140k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Typedesign – Prime Four
hannesfritz
42
2.8k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
How to Ace a Technical Interview
jacobian
280
24k
Scaling GitHub
holman
463
140k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Transcript
Modeling DB @ Cloud Firestore Yatima Kagurazaka ://yati.ma
yati.ma/qi Yatima Kagurazaka Minkore CTO MENSAn Physician I like tech,
design, music, etc My PC: Pixelbook(+ VSCode on Kali Linux)
yati.ma/qi Agenda • What is Cloud Firestore • Structure •
Yatima Model
What is Cloud Firestore
So easy but Equal to prod. use and Inexpensive
yati.ma/qi So easy Realtime Offline mode Direct connect to clients
(like Realtime Database)
yati.ma/qi Equal to prod. use Almost no downtime Super scalability
Multi region Strong Consistency Some query support
yati.ma/qi Almost no downtime
“ yati.ma/qi Super scalability you'll get the same performance fetching
1 result from a set of 100, or 100,000,000.
Structure
Collection, Doc, Field
Collection, Doc, Field
A doc is minimum unit at communication
yati.ma/qi A doc is minimum unit Read Write Rule Update
limit: 1/sec Subcollection depth: ≦ 100
All queries are shallow
Query is available only in a collection, so far
For making full use, change a way of thinking
Yatima Model
UniFeed: Supereasy timeline system
None
yati.ma/qi UniFeed: Usage Just query at viewer self ID!
yati.ma/qi UniFeed: Limit Indexes in a document: ≦ 20,000 But
we can batch() (≦ 500)
yati.ma/qi Multi UniFeed Follower: ≦ 10,000,000 (20,000 * 500) ...Actually,
not everyone follow one Probably up to approx. 1M follower in rough estimate
yati.ma/qi Level 2 multi UniFeed Add batch() at Cloud Functions,
more scalable Follower: ≦ 5,000,000,000 (20,000 * 500 * 500) and you can go any level! your bank balance vs Google’s capacity
Twixxer should use it immediately :-P
But wait, how about doc size?
yati.ma/qi UniFeed: Doc size w/ auth.uid: < approx. 600kb (20,000
* 30 chars) w/ pushid: < approx. 300kb (20,000 * 15 chars) ...Actually, not everyone bla bla so at most 30kb, usually 300 or less (realistic!)
Firebase as a Cache (Componentized DB, Virtual DB)
yati.ma/qi General: Write
yati.ma/qi General: Read
yati.ma/qi FaaC: Write Virtual DB
yati.ma/qi FaaC: Read
yati.ma/qi FaaC: Pros Componentized DB Flux-like data flow Explicit communications
Flexibility of DB Faster view
yati.ma/qi Flux architecture
yati.ma/qi General: Data flow
yati.ma/qi FaaC: Flux-like data flow Virtual DB
yati.ma/qi General: Implicit comm. Who are you?
yati.ma/qi FaaC: Explicit comm. I know! Same component
yati.ma/qi FaaC: Cons Need to edit DB/rule occasionally (Build tool
overcome it) Fetch per component
yati.ma/qi FaaC: Background Lower cost to edit DB Component-Based Architecture
Denormalize Trend of static contents CDN
A doc is minimum unit! English is difficult for me!
Fin. ヾ(╹◡╹*)ノ゛ Throw your masakari axe at me! ://yati.ma