Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Modeling DB @ Cloud Firestore
Search
Yatima-Kagurazaka
December 16, 2017
Technology
2
780
Modeling DB @ Cloud Firestore
push ID: auto ID in Realtime Database
Yatima-Kagurazaka
December 16, 2017
Tweet
Share
More Decks by Yatima-Kagurazaka
See All by Yatima-Kagurazaka
ChromeOS, Firebase - Google I\O ‘18
yatima
0
530
スマートなcronを考案した / lazy cron
yatima
1
5.6k
Firebaseざっくり / GDG Tokyo New Year Seminar 2018
yatima
0
930
Firestoreで負荷試験 (Loadroid by Rocro) / Firebase.yebisu #1
yatima
1
780
大半のウェブサービス/アプリは,Firebaseなら簡単で安いですよ
yatima
2
3.4k
Realtime Databaseのベストプラクティスっぽいやつ
yatima
0
700
Other Decks in Technology
See All in Technology
Dify on AWS の選択肢
ysekiy
0
120
学術的根拠から読み解くNotebookLMの音声活用法
shukob
1
520
Introduction to Bill One Development Engineer
sansan33
PRO
0
320
Kill the Vibe?Architecture in the age of AI
stoth
1
120
進化の早すぎる生成 AI と向き合う
satohjohn
0
360
Android Studio Otter の最新 Gemini 機能 / Latest Gemini features in Android Studio Otter
yanzm
0
500
TypeScript 6.0で非推奨化されるオプションたち
uhyo
15
5.6k
AWS re:Invent 2025 で頻出の 生成 AI サービスをおさらい
komakichi
3
260
pmconf 2025 大阪「生成AI時代に未来を切り開くためのプロダクト戦略:圧倒的生産性を実現するためのプロダクトサイクロン」 / The Product Cyclone for Outstanding Productivity
yamamuteki
3
3k
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
21k
ローカルLLM基礎知識 / local LLM basics 2025
kishida
25
11k
経営から紐解くデータマネジメント
pacocat
8
1.7k
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.8k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Done Done
chrislema
186
16k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
950
It's Worth the Effort
3n
187
29k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
360
Six Lessons from altMBA
skipperchong
29
4.1k
How GitHub (no longer) Works
holman
316
140k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
For a Future-Friendly Web
brad_frost
180
10k
Transcript
Modeling DB @ Cloud Firestore Yatima Kagurazaka ://yati.ma
yati.ma/qi Yatima Kagurazaka Minkore CTO MENSAn Physician I like tech,
design, music, etc My PC: Pixelbook(+ VSCode on Kali Linux)
yati.ma/qi Agenda • What is Cloud Firestore • Structure •
Yatima Model
What is Cloud Firestore
So easy but Equal to prod. use and Inexpensive
yati.ma/qi So easy Realtime Offline mode Direct connect to clients
(like Realtime Database)
yati.ma/qi Equal to prod. use Almost no downtime Super scalability
Multi region Strong Consistency Some query support
yati.ma/qi Almost no downtime
“ yati.ma/qi Super scalability you'll get the same performance fetching
1 result from a set of 100, or 100,000,000.
Structure
Collection, Doc, Field
Collection, Doc, Field
A doc is minimum unit at communication
yati.ma/qi A doc is minimum unit Read Write Rule Update
limit: 1/sec Subcollection depth: ≦ 100
All queries are shallow
Query is available only in a collection, so far
For making full use, change a way of thinking
Yatima Model
UniFeed: Supereasy timeline system
None
yati.ma/qi UniFeed: Usage Just query at viewer self ID!
yati.ma/qi UniFeed: Limit Indexes in a document: ≦ 20,000 But
we can batch() (≦ 500)
yati.ma/qi Multi UniFeed Follower: ≦ 10,000,000 (20,000 * 500) ...Actually,
not everyone follow one Probably up to approx. 1M follower in rough estimate
yati.ma/qi Level 2 multi UniFeed Add batch() at Cloud Functions,
more scalable Follower: ≦ 5,000,000,000 (20,000 * 500 * 500) and you can go any level! your bank balance vs Google’s capacity
Twixxer should use it immediately :-P
But wait, how about doc size?
yati.ma/qi UniFeed: Doc size w/ auth.uid: < approx. 600kb (20,000
* 30 chars) w/ pushid: < approx. 300kb (20,000 * 15 chars) ...Actually, not everyone bla bla so at most 30kb, usually 300 or less (realistic!)
Firebase as a Cache (Componentized DB, Virtual DB)
yati.ma/qi General: Write
yati.ma/qi General: Read
yati.ma/qi FaaC: Write Virtual DB
yati.ma/qi FaaC: Read
yati.ma/qi FaaC: Pros Componentized DB Flux-like data flow Explicit communications
Flexibility of DB Faster view
yati.ma/qi Flux architecture
yati.ma/qi General: Data flow
yati.ma/qi FaaC: Flux-like data flow Virtual DB
yati.ma/qi General: Implicit comm. Who are you?
yati.ma/qi FaaC: Explicit comm. I know! Same component
yati.ma/qi FaaC: Cons Need to edit DB/rule occasionally (Build tool
overcome it) Fetch per component
yati.ma/qi FaaC: Background Lower cost to edit DB Component-Based Architecture
Denormalize Trend of static contents CDN
A doc is minimum unit! English is difficult for me!
Fin. ヾ(╹◡╹*)ノ゛ Throw your masakari axe at me! ://yati.ma