Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Modeling DB @ Cloud Firestore
Search
Yatima-Kagurazaka
December 16, 2017
Technology
2
780
Modeling DB @ Cloud Firestore
push ID: auto ID in Realtime Database
Yatima-Kagurazaka
December 16, 2017
Tweet
Share
More Decks by Yatima-Kagurazaka
See All by Yatima-Kagurazaka
ChromeOS, Firebase - Google I\O ‘18
yatima
0
530
スマートなcronを考案した / lazy cron
yatima
1
5.7k
Firebaseざっくり / GDG Tokyo New Year Seminar 2018
yatima
0
930
Firestoreで負荷試験 (Loadroid by Rocro) / Firebase.yebisu #1
yatima
1
790
大半のウェブサービス/アプリは,Firebaseなら簡単で安いですよ
yatima
2
3.4k
Realtime Databaseのベストプラクティスっぽいやつ
yatima
0
700
Other Decks in Technology
See All in Technology
Web Intelligence and Visual Media Analytics
weblyzard
PRO
1
6.8k
Oracle Cloud Infrastructure:2026年1月度サービス・アップデート
oracle4engineer
PRO
0
130
Databricks Free Edition講座 データエンジニアリング編
taka_aki
0
2.8k
Amazon Bedrock AgentCore EvaluationsでAIエージェントを評価してみよう!
yuu551
0
160
会社紹介資料 / Sansan Company Profile
sansan33
PRO
13
400k
サイボウズ 開発本部採用ピッチ / Cybozu Engineer Recruit
cybozuinsideout
PRO
10
72k
Security Hub と出会ってから 1年半が過ぎました
rch850
0
180
BPaaSオペレーション・kubell社内 n8n活用による効率化検証事例紹介
kubell_hr
0
250
AI アクセラレータチップ AWS Trainium/Inferentia に 今こそ入門
yoshimi0227
1
320
Zephyr RTOS の発表をOpen Source Summit Japan 2025で行った件
iotengineer22
0
260
現場で活かす生成AI実践セミナー「広報×AI活用」編
matyuda
0
100
OCI技術資料 : OS管理ハブ 概要
ocise
2
4.2k
Featured
See All Featured
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
45
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
62
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
Building an army of robots
kneath
306
46k
Designing for humans not robots
tammielis
254
26k
Accessibility Awareness
sabderemane
0
42
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Amusing Abliteration
ianozsvald
0
87
Abbi's Birthday
coloredviolet
1
4.5k
Unsuck your backbone
ammeep
671
58k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Transcript
Modeling DB @ Cloud Firestore Yatima Kagurazaka ://yati.ma
yati.ma/qi Yatima Kagurazaka Minkore CTO MENSAn Physician I like tech,
design, music, etc My PC: Pixelbook(+ VSCode on Kali Linux)
yati.ma/qi Agenda • What is Cloud Firestore • Structure •
Yatima Model
What is Cloud Firestore
So easy but Equal to prod. use and Inexpensive
yati.ma/qi So easy Realtime Offline mode Direct connect to clients
(like Realtime Database)
yati.ma/qi Equal to prod. use Almost no downtime Super scalability
Multi region Strong Consistency Some query support
yati.ma/qi Almost no downtime
“ yati.ma/qi Super scalability you'll get the same performance fetching
1 result from a set of 100, or 100,000,000.
Structure
Collection, Doc, Field
Collection, Doc, Field
A doc is minimum unit at communication
yati.ma/qi A doc is minimum unit Read Write Rule Update
limit: 1/sec Subcollection depth: ≦ 100
All queries are shallow
Query is available only in a collection, so far
For making full use, change a way of thinking
Yatima Model
UniFeed: Supereasy timeline system
None
yati.ma/qi UniFeed: Usage Just query at viewer self ID!
yati.ma/qi UniFeed: Limit Indexes in a document: ≦ 20,000 But
we can batch() (≦ 500)
yati.ma/qi Multi UniFeed Follower: ≦ 10,000,000 (20,000 * 500) ...Actually,
not everyone follow one Probably up to approx. 1M follower in rough estimate
yati.ma/qi Level 2 multi UniFeed Add batch() at Cloud Functions,
more scalable Follower: ≦ 5,000,000,000 (20,000 * 500 * 500) and you can go any level! your bank balance vs Google’s capacity
Twixxer should use it immediately :-P
But wait, how about doc size?
yati.ma/qi UniFeed: Doc size w/ auth.uid: < approx. 600kb (20,000
* 30 chars) w/ pushid: < approx. 300kb (20,000 * 15 chars) ...Actually, not everyone bla bla so at most 30kb, usually 300 or less (realistic!)
Firebase as a Cache (Componentized DB, Virtual DB)
yati.ma/qi General: Write
yati.ma/qi General: Read
yati.ma/qi FaaC: Write Virtual DB
yati.ma/qi FaaC: Read
yati.ma/qi FaaC: Pros Componentized DB Flux-like data flow Explicit communications
Flexibility of DB Faster view
yati.ma/qi Flux architecture
yati.ma/qi General: Data flow
yati.ma/qi FaaC: Flux-like data flow Virtual DB
yati.ma/qi General: Implicit comm. Who are you?
yati.ma/qi FaaC: Explicit comm. I know! Same component
yati.ma/qi FaaC: Cons Need to edit DB/rule occasionally (Build tool
overcome it) Fetch per component
yati.ma/qi FaaC: Background Lower cost to edit DB Component-Based Architecture
Denormalize Trend of static contents CDN
A doc is minimum unit! English is difficult for me!
Fin. ヾ(╹◡╹*)ノ゛ Throw your masakari axe at me! ://yati.ma