Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Modeling DB @ Cloud Firestore
Search
Yatima-Kagurazaka
December 16, 2017
Technology
2
780
Modeling DB @ Cloud Firestore
push ID: auto ID in Realtime Database
Yatima-Kagurazaka
December 16, 2017
Tweet
Share
More Decks by Yatima-Kagurazaka
See All by Yatima-Kagurazaka
ChromeOS, Firebase - Google I\O ‘18
yatima
0
530
スマートなcronを考案した / lazy cron
yatima
1
5.7k
Firebaseざっくり / GDG Tokyo New Year Seminar 2018
yatima
0
930
Firestoreで負荷試験 (Loadroid by Rocro) / Firebase.yebisu #1
yatima
1
790
大半のウェブサービス/アプリは,Firebaseなら簡単で安いですよ
yatima
2
3.4k
Realtime Databaseのベストプラクティスっぽいやつ
yatima
0
700
Other Decks in Technology
See All in Technology
Context Engineeringの取り組み
nutslove
0
340
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
2.2k
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
410
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
140
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.3k
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
440
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
130
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
530
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
160
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
110
Featured
See All Featured
Test your architecture with Archunit
thirion
1
2.1k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Facilitating Awesome Meetings
lara
57
6.8k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.2k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
What does AI have to do with Human Rights?
axbom
PRO
0
2k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Darren the Foodie - Storyboard
khoart
PRO
2
2.4k
エンジニアに許された特別な時間の終わり
watany
106
230k
A Tale of Four Properties
chriscoyier
162
24k
The agentic SEO stack - context over prompts
schlessera
0
630
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Transcript
Modeling DB @ Cloud Firestore Yatima Kagurazaka ://yati.ma
yati.ma/qi Yatima Kagurazaka Minkore CTO MENSAn Physician I like tech,
design, music, etc My PC: Pixelbook(+ VSCode on Kali Linux)
yati.ma/qi Agenda • What is Cloud Firestore • Structure •
Yatima Model
What is Cloud Firestore
So easy but Equal to prod. use and Inexpensive
yati.ma/qi So easy Realtime Offline mode Direct connect to clients
(like Realtime Database)
yati.ma/qi Equal to prod. use Almost no downtime Super scalability
Multi region Strong Consistency Some query support
yati.ma/qi Almost no downtime
“ yati.ma/qi Super scalability you'll get the same performance fetching
1 result from a set of 100, or 100,000,000.
Structure
Collection, Doc, Field
Collection, Doc, Field
A doc is minimum unit at communication
yati.ma/qi A doc is minimum unit Read Write Rule Update
limit: 1/sec Subcollection depth: ≦ 100
All queries are shallow
Query is available only in a collection, so far
For making full use, change a way of thinking
Yatima Model
UniFeed: Supereasy timeline system
None
yati.ma/qi UniFeed: Usage Just query at viewer self ID!
yati.ma/qi UniFeed: Limit Indexes in a document: ≦ 20,000 But
we can batch() (≦ 500)
yati.ma/qi Multi UniFeed Follower: ≦ 10,000,000 (20,000 * 500) ...Actually,
not everyone follow one Probably up to approx. 1M follower in rough estimate
yati.ma/qi Level 2 multi UniFeed Add batch() at Cloud Functions,
more scalable Follower: ≦ 5,000,000,000 (20,000 * 500 * 500) and you can go any level! your bank balance vs Google’s capacity
Twixxer should use it immediately :-P
But wait, how about doc size?
yati.ma/qi UniFeed: Doc size w/ auth.uid: < approx. 600kb (20,000
* 30 chars) w/ pushid: < approx. 300kb (20,000 * 15 chars) ...Actually, not everyone bla bla so at most 30kb, usually 300 or less (realistic!)
Firebase as a Cache (Componentized DB, Virtual DB)
yati.ma/qi General: Write
yati.ma/qi General: Read
yati.ma/qi FaaC: Write Virtual DB
yati.ma/qi FaaC: Read
yati.ma/qi FaaC: Pros Componentized DB Flux-like data flow Explicit communications
Flexibility of DB Faster view
yati.ma/qi Flux architecture
yati.ma/qi General: Data flow
yati.ma/qi FaaC: Flux-like data flow Virtual DB
yati.ma/qi General: Implicit comm. Who are you?
yati.ma/qi FaaC: Explicit comm. I know! Same component
yati.ma/qi FaaC: Cons Need to edit DB/rule occasionally (Build tool
overcome it) Fetch per component
yati.ma/qi FaaC: Background Lower cost to edit DB Component-Based Architecture
Denormalize Trend of static contents CDN
A doc is minimum unit! English is difficult for me!
Fin. ヾ(╹◡╹*)ノ゛ Throw your masakari axe at me! ://yati.ma