Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Modeling DB @ Cloud Firestore
Search
Yatima-Kagurazaka
December 16, 2017
Technology
2
770
Modeling DB @ Cloud Firestore
push ID: auto ID in Realtime Database
Yatima-Kagurazaka
December 16, 2017
Tweet
Share
More Decks by Yatima-Kagurazaka
See All by Yatima-Kagurazaka
ChromeOS, Firebase - Google I\O ‘18
yatima
0
520
スマートなcronを考案した / lazy cron
yatima
1
5.6k
Firebaseざっくり / GDG Tokyo New Year Seminar 2018
yatima
0
930
Firestoreで負荷試験 (Loadroid by Rocro) / Firebase.yebisu #1
yatima
1
760
大半のウェブサービス/アプリは,Firebaseなら簡単で安いですよ
yatima
2
3.3k
Realtime Databaseのベストプラクティスっぽいやつ
yatima
0
700
Other Decks in Technology
See All in Technology
リリース2ヶ月で収益化した話
kent_code3
1
310
開発 × 生成AI × コミュニケーション:GENDAの開発現場で感じたコミュニケーションの変化 / GENDA Tech Talk #1
genda
0
260
LLM 機能を支える Langfuse / ClickHouse のサーバレス化
yuu26
9
2.4k
[OCI Technical Deep Dive] OracleのAI戦略(2025年8月5日開催)
oracle4engineer
PRO
1
190
AI関数が早くなったので試してみよう
kumakura
0
320
Amazon Qで2Dゲームを作成してみた
siromi
0
150
データモデリング通り #2オンライン勉強会 ~方法論の話をしよう~
datayokocho
0
170
마라톤 끝의 단거리 스퍼트: 2025년의 AI
inureyes
PRO
1
760
LLMで構造化出力の成功率をグンと上げる方法
keisuketakiguchi
0
910
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
layerx
PRO
1
850
Delegate authentication and a lot more to Keycloak with OpenID Connect
ahus1
0
220
AIのグローバルトレンド 2025 / ai global trend 2025
kyonmm
PRO
1
150
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
How to Ace a Technical Interview
jacobian
278
23k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Become a Pro
speakerdeck
PRO
29
5.5k
Writing Fast Ruby
sferik
628
62k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Thoughts on Productivity
jonyablonski
69
4.8k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Transcript
Modeling DB @ Cloud Firestore Yatima Kagurazaka ://yati.ma
yati.ma/qi Yatima Kagurazaka Minkore CTO MENSAn Physician I like tech,
design, music, etc My PC: Pixelbook(+ VSCode on Kali Linux)
yati.ma/qi Agenda • What is Cloud Firestore • Structure •
Yatima Model
What is Cloud Firestore
So easy but Equal to prod. use and Inexpensive
yati.ma/qi So easy Realtime Offline mode Direct connect to clients
(like Realtime Database)
yati.ma/qi Equal to prod. use Almost no downtime Super scalability
Multi region Strong Consistency Some query support
yati.ma/qi Almost no downtime
“ yati.ma/qi Super scalability you'll get the same performance fetching
1 result from a set of 100, or 100,000,000.
Structure
Collection, Doc, Field
Collection, Doc, Field
A doc is minimum unit at communication
yati.ma/qi A doc is minimum unit Read Write Rule Update
limit: 1/sec Subcollection depth: ≦ 100
All queries are shallow
Query is available only in a collection, so far
For making full use, change a way of thinking
Yatima Model
UniFeed: Supereasy timeline system
None
yati.ma/qi UniFeed: Usage Just query at viewer self ID!
yati.ma/qi UniFeed: Limit Indexes in a document: ≦ 20,000 But
we can batch() (≦ 500)
yati.ma/qi Multi UniFeed Follower: ≦ 10,000,000 (20,000 * 500) ...Actually,
not everyone follow one Probably up to approx. 1M follower in rough estimate
yati.ma/qi Level 2 multi UniFeed Add batch() at Cloud Functions,
more scalable Follower: ≦ 5,000,000,000 (20,000 * 500 * 500) and you can go any level! your bank balance vs Google’s capacity
Twixxer should use it immediately :-P
But wait, how about doc size?
yati.ma/qi UniFeed: Doc size w/ auth.uid: < approx. 600kb (20,000
* 30 chars) w/ pushid: < approx. 300kb (20,000 * 15 chars) ...Actually, not everyone bla bla so at most 30kb, usually 300 or less (realistic!)
Firebase as a Cache (Componentized DB, Virtual DB)
yati.ma/qi General: Write
yati.ma/qi General: Read
yati.ma/qi FaaC: Write Virtual DB
yati.ma/qi FaaC: Read
yati.ma/qi FaaC: Pros Componentized DB Flux-like data flow Explicit communications
Flexibility of DB Faster view
yati.ma/qi Flux architecture
yati.ma/qi General: Data flow
yati.ma/qi FaaC: Flux-like data flow Virtual DB
yati.ma/qi General: Implicit comm. Who are you?
yati.ma/qi FaaC: Explicit comm. I know! Same component
yati.ma/qi FaaC: Cons Need to edit DB/rule occasionally (Build tool
overcome it) Fetch per component
yati.ma/qi FaaC: Background Lower cost to edit DB Component-Based Architecture
Denormalize Trend of static contents CDN
A doc is minimum unit! English is difficult for me!
Fin. ヾ(╹◡╹*)ノ゛ Throw your masakari axe at me! ://yati.ma