Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWSでRAGを実現する上で感じた3つの大事なこと
Search
y-mae
February 06, 2025
Technology
3
1.8k
AWSでRAGを実現する上で感じた3つの大事なこと
ARI TechSummit ~AI・生成AI~(2025/02/06実施)LT登壇資料
y-mae
February 06, 2025
Tweet
Share
More Decks by y-mae
See All by y-mae
雲勉LT_Amazon Bedrock AgentCoreを知りAIエージェントに入門しよう!
ymae
2
250
3/26 クラウド食堂LT #2 GenU案件を通して学んだ教訓 登壇資料
ymae
2
430
「genai-quickstart-pocs」を使ってお手軽に生成AIのPoCを始めよう!
ymae
3
260
生成AIとAWS CDKで実現! 自社ブログレビューの効率化
ymae
4
1.2k
Other Decks in Technology
See All in Technology
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
140
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
390
モバイルゲーム開発におけるエージェント技術活用への試行錯誤 ~開発効率化へのアプローチの紹介と未来に向けた展望~
qualiarts
0
650
[JAWS-UG 横浜支部 #91]DevOps Agent vs CloudWatch Investigations -比較と実践-
sh_fk2
1
240
21st ACRi Webinar - Univ of Tokyo Presentation Slide (Shinya Takamaeda)
nao_sumikawa
0
120
プロダクトマネージャーが押さえておくべき、ソフトウェア資産とAIエージェント投資効果 / pmconf2025
i35_267
2
580
EM歴1年10ヶ月のぼくがぶち当たった苦悩とこれからへ向けて
maaaato
0
270
Playwright x GitHub Actionsで実現する「レビューしやすい」E2Eテストレポート
kinosuke01
0
320
コミューンのデータ分析AIエージェント「Community Sage」の紹介
fufufukakaka
0
430
なぜ使われないのか?──定量×定性で見極める本当のボトルネック
kakehashi
PRO
1
1.2k
5分で知るMicrosoft Ignite
taiponrock
PRO
0
150
pmconf2025 - 他社事例を"自社仕様化"する技術_iRAFT法
daichi_yamashita
0
780
Featured
See All Featured
Building Applications with DynamoDB
mza
96
6.8k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
[SF Ruby Conf 2025] Rails X
palkan
0
490
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Navigating Team Friction
lara
191
16k
We Have a Design System, Now What?
morganepeng
54
7.9k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Unsuck your backbone
ammeep
671
58k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Speed Design
sergeychernyshev
33
1.4k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Transcript
前野 佑宜 アイレット株式会社 DX開発事業部 モダンエンジニアリングセクション ビジネスデザインG AWSでRAGを実現する上で 感じた3つの大事なこと ARI TechSummit
~AI・生成AI~
はじめに〜 LTの要点〜 本LTでお伝えしないこと • RAGの基本的な概念の解説 • 具体的な実装→Qiitaブログで解説しております • AWSでRAGを実現する上で学んだ教訓 ◦
RAGを実現する上で直面した課題、解決策 本LTでお伝えすること
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
前野 佑宜 2023年新卒入社/入社2年目 2024 Japan AWS Jr. Champions選出 アイレット株式会社 ま え の
ゆ う き 経歴 DX開発事業部/モダンエンジニアリングS/ビジネスデザインG 担当業務 Python/Laravelを使ったバックエンド開発を主に担当 現在はAWSの生成AIサービス/RAGを組み合わせたPoC(概 念実証)に従事 関心のある領域 AWS× AI/MLの領域(Amazon Bedrock/ Amazon SageMakerなど)
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
02.AWSでRAGを実現する手段を整理 AWSにおけるRAG構成パターン(代表例) Kendra+Bedrock Knowledge Base
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
03.実際に直面した課題 /解決策 「RAG」実現にあたって直面した課題 ①Kendraで同期できないデータがある ②検索性の問題 ③精度をどうやって評価する?
03.実際に直面した課題 /解決策 ①Kendraで同期できないデータがある 同期に失敗 したファイル Document cannot be indexed since
it contains no text to index and search on. Document must contain some text 文字情報が 存在しないと index化不可
03.実際に直面した課題 /解決策 ①Kendraで同期できないデータがある →Amazon Bedrock(Claude Haiku 3)によるテキスト化であ る程度解決 ※書き起こし精度は 元々のドキュメントに
依存 「可能な限りテキスト化して」
03.実際に直面した課題 /解決策 ②検索性の問題 データソースのファイル数増 →「ユーザーが本当に必要としている情報」⇔「実際表示される検索結果」 検証期間は残り 2週間。 なんとか結果を出さねば・・
03.実際に直面した課題 /解決策 ②検索性の問題 →メタデータによるフィルタリングで解決! RAG の精度を向上させる Advanced RAG on AWS
の道標 (AWS Blog)より引用 短い期間でも 改善可能と判断
03.実際に直面した課題 /解決策 ②検索性の問題 メタデータによるフィルタリングのイメージ
03.実際に直面した課題 /解決策 ③精度をどう評価する? RAGのパフォーマンスをどのように評価するか?が課題だった ・検証フェーズは約 1ヶ月。 ・RAG評価ツールに関する知見もあまりない (RAGAS やRAGChecker はちょっと聞いたことある、程度)
03.実際に直面した課題 /解決策 ③精度をどう評価する? →評価項目を定義し、 RAGの結果を定量化 「どんな質問をすることを想定?」 「どんな回答が返ってきたら満足度高い?」 「RAGにおいて何を重視している?」 お客様 「質問内容に近いドキュメントが返却される」
ことが大事
03.実際に直面した課題 /解決策 ③精度をどう評価する? →事前のすり合わせに基づいて、評価スコアを定義・評価 →可視化 最終評価するのはお客様。 →事前にすり合わせを行うことで 最終評価の参考にできる
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
04.RAGを実現する上で学んだ教訓 AWSのRAGにおいて大事だと思ったこと ①データソースの質を担保する重要性 ②前段の”検索”の仕組みの改善 ③精度評価 →「お客様と対話し、現場のニーズを把握」
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
RAG=「銀の弾丸」ではない! 地道な改善 /ニーズの把握 こそが成果につながる!
ご清聴ありがとうございました
参照文献 • 関連ブログ ◦ AWSでRAGを実装する上で感じた3つの大事なこと (Qiitaブログ) ◦ RAG の精度を向上させる Advanced
RAG on AWS の道標 (AWS)