Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
関数方程式のあやしい世界
Search
Yoriyuki Yamagata
April 13, 2019
Science
0
770
関数方程式のあやしい世界
関数方程式の闇
Yoriyuki Yamagata
April 13, 2019
Tweet
Share
More Decks by Yoriyuki Yamagata
See All by Yoriyuki Yamagata
科学の虚構主義的解釈と祖先以前性の問題
yoriyuki
1
250
5分で分る直観主義数学
yoriyuki
0
580
算道 − 古代・中世日本の数学 -
yoriyuki
1
770
指数関数は存在しないという話
yoriyuki
0
400
Other Decks in Science
See All in Science
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
170
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
560
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
150
NDCG is NOT All I Need
statditto
2
2.6k
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
250
HDC tutorial
michielstock
1
290
Celebrate UTIG: Staff and Student Awards 2025
utig
0
410
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
150
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
130
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
34
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
2.8k
Building an army of robots
kneath
306
46k
Agile that works and the tools we love
rasmusluckow
331
21k
Unsuck your backbone
ammeep
671
58k
The SEO identity crisis: Don't let AI make you average
varn
0
44
How Software Deployment tools have changed in the past 20 years
geshan
0
31k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
100
Making Projects Easy
brettharned
120
6.5k
4 Signs Your Business is Dying
shpigford
187
22k
Transcript
͜ͷΑ͏ͳfΛͯ͢ٻΊΑ f(x) = x͕Ұͭͷղ͕ͩ… ؔํఔࣜ f(x + y) = f(x)
+ f(y) f(1) = 1
ղ ଞʹղʁ f(x) + f(y) = f(x + y +
2f(xy)) f: ℝ≥0 → ℝ≥0 f(x) = 0 and f(x) = x
ఆཧ f͕࿈ଓͳΒɺղ f(x) = 0 ·ͨ f(x) = x
ิ̍ f͕୯ࣹͳΒf(x)=√x f(x) + f(y) + f(1) = f(x +
y + 1 + 2f(y) + 2f(xy + x + 2xf(y)) f(x) + f(y) + f(1) = f(x + y + 1 + 2f(xy) + 2f(x) + 2f(y)) ূ໌ɿ f͕୯ࣹΑΓ f(xy + x + 2xf(y)) = f(xy) + f(x) = f(xy + x + 2f(x2y)) ∴ f(x2y) = xf(y) ∴ f(x) = f(1) x
ิ̎ f(x)x͕૿Ճͨ͠ͱ͖ݮগ͠ͳ͍ t ↦ t + 2f(xt) ҙͷਖ਼ͷ࣮Λͭ ূ໌ɿ Αͬͯy>xʹରͯ͋͠Δt͕ଘࡏͯ͠
f(y) = f(x + t + 2f(xt)) = f(x) + f(t) ≥ f(x)
ఆཧͷূ໌ ͋͠ΔaͰf(a) = 0ͳΒ f(2a) ≤ f(2a + 2f(a2)) =
2f(a) = 0 fݮগ͠ͳ͍͔Βɺf߃తʹ̌ɻ ͦ͏Ͱͳ͍ͱ͢Δɻิ̎ͷূ໌ͱಉ༷ʹ ҙͷy>xʹ͍ͭͯɺ͋Δt͕͋ͬͯy-x = t + f(tx) f(y) = f(x + t + f(tx)) = f(x) + f(t) > f(x) Αͬͯf୯ௐ૿େɻิ̍ΑΓ
ະղܾ f͕ҰൠͷؔͩͬͨΒʁ