Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
関数方程式のあやしい世界
Search
Yoriyuki Yamagata
April 13, 2019
Science
0
740
関数方程式のあやしい世界
関数方程式の闇
Yoriyuki Yamagata
April 13, 2019
Tweet
Share
More Decks by Yoriyuki Yamagata
See All by Yoriyuki Yamagata
科学の虚構主義的解釈と祖先以前性の問題
yoriyuki
1
240
5分で分る直観主義数学
yoriyuki
0
570
算道 − 古代・中世日本の数学 -
yoriyuki
1
730
指数関数は存在しないという話
yoriyuki
0
390
Other Decks in Science
See All in Science
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
980
Symfony Console Facelift
chalasr
2
480
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
670
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
170
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
100
サイゼミ用因果推論
lw
1
7.5k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
150
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
140
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
860
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
2k
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
370
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
290
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Practical Orchestrator
shlominoach
190
11k
Agile that works and the tools we love
rasmusluckow
331
21k
BBQ
matthewcrist
89
9.8k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Unsuck your backbone
ammeep
671
58k
Transcript
͜ͷΑ͏ͳfΛͯ͢ٻΊΑ f(x) = x͕Ұͭͷղ͕ͩ… ؔํఔࣜ f(x + y) = f(x)
+ f(y) f(1) = 1
ղ ଞʹղʁ f(x) + f(y) = f(x + y +
2f(xy)) f: ℝ≥0 → ℝ≥0 f(x) = 0 and f(x) = x
ఆཧ f͕࿈ଓͳΒɺղ f(x) = 0 ·ͨ f(x) = x
ิ̍ f͕୯ࣹͳΒf(x)=√x f(x) + f(y) + f(1) = f(x +
y + 1 + 2f(y) + 2f(xy + x + 2xf(y)) f(x) + f(y) + f(1) = f(x + y + 1 + 2f(xy) + 2f(x) + 2f(y)) ূ໌ɿ f͕୯ࣹΑΓ f(xy + x + 2xf(y)) = f(xy) + f(x) = f(xy + x + 2f(x2y)) ∴ f(x2y) = xf(y) ∴ f(x) = f(1) x
ิ̎ f(x)x͕૿Ճͨ͠ͱ͖ݮগ͠ͳ͍ t ↦ t + 2f(xt) ҙͷਖ਼ͷ࣮Λͭ ূ໌ɿ Αͬͯy>xʹରͯ͋͠Δt͕ଘࡏͯ͠
f(y) = f(x + t + 2f(xt)) = f(x) + f(t) ≥ f(x)
ఆཧͷূ໌ ͋͠ΔaͰf(a) = 0ͳΒ f(2a) ≤ f(2a + 2f(a2)) =
2f(a) = 0 fݮগ͠ͳ͍͔Βɺf߃తʹ̌ɻ ͦ͏Ͱͳ͍ͱ͢Δɻิ̎ͷূ໌ͱಉ༷ʹ ҙͷy>xʹ͍ͭͯɺ͋Δt͕͋ͬͯy-x = t + f(tx) f(y) = f(x + t + f(tx)) = f(x) + f(t) > f(x) Αͬͯf୯ௐ૿େɻิ̍ΑΓ
ະղܾ f͕ҰൠͷؔͩͬͨΒʁ