Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[輪読]時系列解析入門 第1章
Search
ysekky
January 27, 2015
Research
1
970
[輪読]時系列解析入門 第1章
Gunosyデータマイニング研究会 #82 2015/01/27
ysekky
January 27, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.6k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
750
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.7k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.4k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.1k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.9k
Other Decks in Research
See All in Research
Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
satai
3
150
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
6
2k
SpectralMamba: Efficient Mamba for Hyperspectral Image Classification
satai
3
150
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
240
ラムダ計算の拡張に基づく 音楽プログラミング言語mimium とそのVMの実装
tomoyanonymous
0
410
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
550
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
24
6k
Segment Any Change
satai
3
220
LLM 시대의 Compliance: Safety & Security
huffon
0
600
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
420
DeepSeek を利用する上でのリスクと安全性の考え方
schroneko
3
810
Vision Language Modelと完全自動運転AIの最新動向
tsubasashi
0
220
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
47
7.4k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Building an army of robots
kneath
303
45k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
260
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
Docker and Python
trallard
44
3.3k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
How to Ace a Technical Interview
jacobian
276
23k
What's in a price? How to price your products and services
michaelherold
244
12k
Faster Mobile Websites
deanohume
306
31k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Transcript
時系列解析入門 1章 時系列データの解析とその準備 Yoshifumi Seki (Gunosy Inc) 2015.01.27
1.1 時系列データ
1.2 時系列の分類 • 連続時間時系列 – レコーダなどで連続的に記録されたデータ • 離散時間時系列
– 1時間おきなど,ある時間間隔で観測されたデー タ – 等間隔なものと不等間隔な物がある • 殆どの場合は等間隔な離散時間系列データ のことを時系列データという
1.2 時系列の分類 • 一変量時系列(univariate) – 各観測時点で得られる情報が一種類 • 多変量時系列(mul?-‐variate)
– 二つ以上の情報を同時に記録したもの
1.2 時系列の分類 • ガウス型時系列 – 時系列の分布が正規分布に従う • 非ガウス型時系列
– 正規分布に従わない • この本で取り扱うモデルの多くはガウス型時系 列を仮定している • そのままでは扱えなくても,適切な変換を行うこ とによって銀地的にガウス型時系列として扱える 場合もある
1.2 時系列の分類 • 線形時系列 – 線形なモデルの出力として表現できる • 非線形時系列
– 非線形なモデルが必要
1.2 時系列の分類 • 欠測値 – なんらかの理由により値が観測できなかったデー タ • 異常値
– 観測している現象の異常な振る舞い,観測機器 の異常などにより起こる明らかに異常なデータ
1.3 時系列解析の目的 • 記述 – 図示 – 記述統計量を用いて特徴を簡潔に表現する •
標本自己共分散関数 • 標本自己相関関数 • ピリオドグラム • 時系列データはデータの量が多いのでグラフ で表現される
1.3 時系列解析の目的 • モデリング – 時系列の変動の仕方を表現するモデルを構築し, 確率的構造を解析すること – 目的に応じて適切な時系列モデルを選択し,パラ メータを推定する
1.3 時系列解析の目的 • 予測 – 時系列が互いに相関を持つことを利用し,現在ま でに得られたデータから今後の変動を予測する – 推定されたモデルを利用して予測やシミュレー ションを行う
1.3 時系列解析の目的 • 信号抽出 – 目的に応じて必要な信号や情報を取り出すこと
1.4 時系列データの前処理 • 非定常な時系列データを前処理によって定常 化する a) 変数変換 b)
差分(階差) c) 前期比,前年同期比 d) 移動平均
1.4 (a) 変数変換 • 値が大きくなるとその分変動も大きくなることが ある – 金額, 人数など
– 対数化すると分散が一様になったり,誤差分布が正 規分布とみなせる場合がある • 確率や割合のような(0, 1)をとる時系列の場合に はロジット変換によって(-‐∞, ∞)をとる時系列に変 換できる – 分布の歪が少なくなりモデリングが容易になることが 多い
1.4 (b) 差分(階差) • 上昇, 下落のような顕著なトレンドをもつ場合 には差分系列を解析することがある • 仮に直線の場合は時系列が定数になる
• 2次式の場合はさらにznの差分を求めること で2次成分と1次成分を除去できる
1.4 (c) 前期比, 前年同期比 • 経済データなどでよく用いられる • 時系列データがトレンドT, ノイズwの積で表現
され, トレンドは成長率αで変化すると • ノイズの変化を無視できるとすれば成長率を 算出できる
1.4 (c) 前期比, 前年同期比 • 時系列が周期pの周期関数sとノイズwの積と して表される場合には • 周期関数を除去できる
1.4 (d) 移動平均 変動の激しい時系列を滑らかにする 元の時系列が直線とノイズの和で表されるとき 平均はa+bn, 分散はwの分散の1/(2k+1となる)