Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Confusion matrix
Search
Sunmi Yoon
November 03, 2019
Technology
0
160
Confusion matrix
Confusion matrix 기초부터 머신러닝 응용까지 for dataitgirls3
Sunmi Yoon
November 03, 2019
Tweet
Share
More Decks by Sunmi Yoon
See All by Sunmi Yoon
데이터 분석가 채용 공고 읽는 방법
ysunmi0427
1
350
Deep down in classification 0.5 magic number
ysunmi0427
0
100
Tree Methods
ysunmi0427
0
130
심슨의 역설
ysunmi0427
0
2.3k
회사는 어떤 사람을 데이터 분석가로 채용하고 싶어하는 것일까?
ysunmi0427
0
2.4k
Other Decks in Technology
See All in Technology
AI駆動開発によるDDDの実践
dip_tech
PRO
0
370
プロダクトマネジメントの分業が生む「デリバリーの渋滞」を解消するTPMの越境
recruitengineers
PRO
3
610
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
260
生成AI・AIエージェント時代、データサイエンティストは何をする人なのか?そして、今学生であるあなたは何を学ぶべきか?
kuri8ive
2
2k
Playwright x GitHub Actionsで実現する「レビューしやすい」E2Eテストレポート
kinosuke01
0
160
MS Ignite 2025で発表されたFoundry IQをRecap
satodayo
3
250
Agents IA : la nouvelle frontière des LLMs (Tech.Rocks Summit 2025)
glaforge
0
460
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
38k
Product Engineer
resilire
0
150
シンプルを極める。アンチパターンなDB設計の本質
facilo_inc
2
1.6k
Ryzen NPUにおけるAI Engineプログラミング
anjn
0
240
eBPFとwaruiBPF
sat
PRO
4
2.3k
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
340
57k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
A better future with KSS
kneath
240
18k
Code Reviewing Like a Champion
maltzj
527
40k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
69k
Raft: Consensus for Rubyists
vanstee
141
7.2k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
700
Automating Front-end Workflow
addyosmani
1371
200k
Visualization
eitanlees
150
16k
Designing Experiences People Love
moore
143
24k
Building Adaptive Systems
keathley
44
2.9k
Transcript
Evaluation for classification dataitgirls3 Instructor Sunmi Yoon
Confusion Matrix
https://sumniya.tistory.com/26
Evaluation Metrics from Confusion Matrix
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
Precision(ب), PPV(Positive Predictive Value) ݽ؛ TrueۄҊ ࠙ܨೠ Ѫ ী, पઁ
Trueੋ Ѫ ࠺ਯ Recall(അਯ), Sensitivity, hit rate पઁ True ী ݽ؛ True۽ ࠙ܨೠ ࠺ਯ “Precision݅ न҃ਸ ॳݶ ݽ؛ ੋ࢝೧Ҋ, Recall݅ न҃ॳݶ ݽ؛ ಌ” ܳ ࢤп೧ࠁࣁਃ.
Accuracy TP, TNਸ ݽف Ҋ۰ೞח . Label ࠛӐഋ बೡ ٸী
ࢎਊਸ ೧ঠ פ. F1 Score Precisionҗ Recall ઑചಣӐ Label ࠛӐഋ बೡ ٸী ݽ؛ ࢿמਸ ഛೞѱ ಣоೡ ࣻ णפ. Label ࠛӐഋ बೡ ٸী, Accuracyח ۽ࢲ न܉ࢿਸ णפ. ਬܳ ࢤп ೧ ࠁࣁਃ.
https://sumniya.tistory.com/26 ৵ ࣿಣӐ ইפҊ ઑചಣӐੋо?
ઑӘ݅ ؊ о ࠇद
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 द Ӓܿਵ۽ جই৬ࢲ, ଘ ফܳ बਵ۽ ࢤп೮
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 द Ӓܿਵ۽ جই৬ࢲ, ߣূ ফب э ࢤпೞݶࢲ ࠇद
(Әࠗఠ ഁтܾ ࣻ )
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
Precision Positive Predictive Value ࠙ܨ Ѿҗ(ݽ؛)ਸ बਵ۽
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
Negative Predictive Value ࠙ܨ Ѿҗ(ݽ؛)ਸ बਵ۽
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
Recall Sensitivity True Positive Rate ਸ बਵ۽
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
ਸ बਵ۽ False Positive Rate
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
ਸ बਵ۽ Specificity True Negative Rate
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
ਸ बਵ۽ Fall-out rate False Positive Rate
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 Ѧ ೞҊ ೮ભ. ߣূ ফب э ࢤпೞݶࢲ ࠇद (Әࠗఠ
ഁтܾ ࣻ )
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
? TP ब ٜ ܻೞݶ, ?
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
TN ब ٜ ? ܻೞݶ, ?
ഁтܻભ? ਗې Ӓ۠Ѣਃ
ӝୡח ೮ਵפө ઑӘ݅ ؊ ೧ ࠇद.
Confusion Matrix with Histogram
https://www.medcalc.org/manual/roc-curves.php Criterion, Threshold য়ܲଃ Distribution Actual True, ৽ଃ Actual False.
Threshold ਤ۽ח ݽف True۽ ஏೞח ݽ؛ Ҋ о೮ਸ ٸ,
https://www.medcalc.org/manual/roc-curves.php Thresholdܳ ӓױਵ۽ ஏ ز दெࠇद. যڃ ੌ ੌযաաਃ? Precision:
Recall: Specificity: Fall-out:
https://www.medcalc.org/manual/roc-curves.php Thresholdܳ ӓױਵ۽ ஏ ز दெࠇद. যڃ ੌ ੌযաաਃ? True
positive rate: True negative rate:
https://www.medcalc.org/manual/roc-curves.php ߣূ ߈۽ ز दெࠇद. যڃ ੌ ੌযաաਃ? True positive
rate: True negative rate:
Specificity৬ Sensitivity ҙ҅ https://www.medcalc.org/manual/roc-curves.php
ROC(Receiver Operating Characteristic) curve
рױೞѱח, Sensitivity৬ 1-Specificityܳ п ୷ਵ۽ ೞח 2ରਗ Ӓې https://www.medcalc.org/manual/roc-curves.php AUC
(Area Under Curve)
рױೞѱח, Sensitivity৬ 1-Specificityܳ п ୷ਵ۽ ೞח 2ରਗ Ӓې https://www.medcalc.org/manual/roc-curves.php Actual
True৬ Actual False distribution ৮߷ೞѱ эਸ ٸ (feature class ߸߹מ۱ হ) ROC curveח 45ب пب ࢶ
рױೞѱח, Sensitivity৬ 1-Specificityܳ п ୷ਵ۽ ೞח 2ରਗ Ӓې https://www.medcalc.org/manual/roc-curves.php Actual
True৬ Actual False distribution Ҁח হ ৮߷ೞѱ ܻ࠙ ؼ ٸ ROC ழ࠳ (feature class ߸߹ מ۱ ৮߷) ROC ழ࠳о ઝ࢚ױী оөࣻ۾ feature class ߸߹ מ۱ જҊ ೡ ࣻ .
ROC(Receiver Operating Characteristic) curve with Machine Learning
Classifierܳ ݅ٚח Ѥ, ف ѐ histogramਸ ӒܻҊ Thresholdܳ ೞח Ѫ
https://www.medcalc.org/manual/roc-curves.php
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py Histogramਸ Ӓ۷ח Ѥ ROC ழ࠳ܳ Ӓܾ ࣻ ח Ѫ!
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py ROC ழ࠳ܳ Ӓܾ ࣻ ח Ѥ ৈ۞ ROC ழ࠳
р ࠺Үܳ ా೧ જ ࢿמ ݽ؛ਸ ইյ ࣻ ח Ѫ!
AUCо = ݽ؛ ҅ೠ probabilityܳ ߄ఔਵ۽ Ӓܽ histogramٜ ੜ
ܻ࠙غয . = ݽ؛ Threshold(Decision BoundaryۄҊب ೠ)ী ؏ хೞ. = উੋ ஏਸ ೠ.
ݽ؛ ࢶఖী ROC ழ࠳ܳ ഝਊೠ = Decision Boundaryী ࢚ҙহ ؊
જ ݽ؛ਸ ח. = ganziо դ.
Ӓ۰ࠇद. ؘఠ: titanic ݽ؛ - sklearn.linear_model.LinearRegression - sklearn.linear_model.LogisticRegression -
sklearn.tree.DecisionTreeClassifier - sklearn.ensemble.RandomForestClassifier ١ whatever you want - Tree ҅ৌ ݽ؛ ҃ model predict_proba() ݫࣗ٘ܳ ࢎਊೞݶ ഛܫ ҅ ؾ פ. - ীח Thresholdܳ a ݅ఀ ز೧оݴ Sensitivity, Specificityܳ ҅೧ ઝܳ ҳೞ ࣁਃ. - যڌѱ ೞݶ Thresholdܳ ੜ زदఃݶࢲ ROC ઝܳ ନਸ ࣻ ਸөਃ? - ઝٜਸ ಣݶ࢚ী ନযࠁࣁਃ.
sklearn.metrics.roc_curve ܳ ഝਊ ೧ ࠇद. ؘఠ: titanic ݽ؛ - sklearn.linear_model.LinearRegression
- sklearn.linear_model.LogisticRegression - sklearn.tree.DecisionTreeClassifier - sklearn.ensemble.RandomForestClassifier ١ whatever you want ؊ աইоࢲ, - sklearnਸ ਊ೧ AUCب ҅ ೧ࠇद. - ৈ۞ ݽ؛ٜ ࢿמਸ ࠺Ү ೧ ࠇद. - DecisionTreeClassifierܳ ࢎਊ೮؊ۄب, ࢎਊೠ featureо ܰݶ ӒѤ ܲ ݽ؛ੑפ . - ఋఋץ ݈Ҋ, ܲ classification ޙઁীب ഝਊ೧ ࠁࣁਃ.