Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Confusion matrix
Search
Sunmi Yoon
November 03, 2019
Technology
0
140
Confusion matrix
Confusion matrix 기초부터 머신러닝 응용까지 for dataitgirls3
Sunmi Yoon
November 03, 2019
Tweet
Share
More Decks by Sunmi Yoon
See All by Sunmi Yoon
데이터 분석가 채용 공고 읽는 방법
ysunmi0427
1
320
Deep down in classification 0.5 magic number
ysunmi0427
0
87
Tree Methods
ysunmi0427
0
110
심슨의 역설
ysunmi0427
0
2k
회사는 어떤 사람을 데이터 분석가로 채용하고 싶어하는 것일까?
ysunmi0427
0
2.2k
Other Decks in Technology
See All in Technology
2/18/25: Java meets AI: Build LLM-Powered Apps with LangChain4j
edeandrea
PRO
0
120
2024.02.19 W&B AIエージェントLT会 / AIエージェントが業務を代行するための計画と実行 / Algomatic 宮脇
smiyawaki0820
13
3.5k
JEDAI Meetup! Databricks AI/BI概要
databricksjapan
0
110
Raycast AI APIを使ってちょっと便利な拡張機能を作ってみた / created-a-handy-extension-using-the-raycast-ai-api
kawamataryo
0
100
データマネジメントのトレードオフに立ち向かう
ikkimiyazaki
6
990
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.3k
現場の種を事業の芽にする - エンジニア主導のイノベーションを事業戦略に装着する方法 -
kzkmaeda
2
2.1k
白金鉱業Meetup Vol.17_あるデータサイエンティストのデータマネジメントとの向き合い方
brainpadpr
6
760
2025-02-21 ゆるSRE勉強会 Enhancing SRE Using AI
yoshiiryo1
1
360
「海外登壇」という 選択肢を与えるために 〜Gophers EX
logica0419
0
710
抽象化をするということ - 具体と抽象の往復を身につける / Abstraction and concretization
soudai
19
7.4k
AndroidXR 開発ツールごとの できることできないこと
donabe3
0
130
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
42
7.2k
How to Ace a Technical Interview
jacobian
276
23k
Docker and Python
trallard
44
3.3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
The Language of Interfaces
destraynor
156
24k
A Tale of Four Properties
chriscoyier
158
23k
Bash Introduction
62gerente
611
210k
Facilitating Awesome Meetings
lara
52
6.2k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Scaling GitHub
holman
459
140k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Transcript
Evaluation for classification dataitgirls3 Instructor Sunmi Yoon
Confusion Matrix
https://sumniya.tistory.com/26
Evaluation Metrics from Confusion Matrix
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
Precision(ب), PPV(Positive Predictive Value) ݽ؛ TrueۄҊ ࠙ܨೠ Ѫ ী, पઁ
Trueੋ Ѫ ࠺ਯ Recall(അਯ), Sensitivity, hit rate पઁ True ী ݽ؛ True۽ ࠙ܨೠ ࠺ਯ “Precision݅ न҃ਸ ॳݶ ݽ؛ ੋ࢝೧Ҋ, Recall݅ न҃ॳݶ ݽ؛ ಌ” ܳ ࢤп೧ࠁࣁਃ.
Accuracy TP, TNਸ ݽف Ҋ۰ೞח . Label ࠛӐഋ बೡ ٸী
ࢎਊਸ ೧ঠ פ. F1 Score Precisionҗ Recall ઑചಣӐ Label ࠛӐഋ बೡ ٸী ݽ؛ ࢿמਸ ഛೞѱ ಣоೡ ࣻ णפ. Label ࠛӐഋ बೡ ٸী, Accuracyח ۽ࢲ न܉ࢿਸ णפ. ਬܳ ࢤп ೧ ࠁࣁਃ.
https://sumniya.tistory.com/26 ৵ ࣿಣӐ ইפҊ ઑചಣӐੋо?
ઑӘ݅ ؊ о ࠇद
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 द Ӓܿਵ۽ جই৬ࢲ, ଘ ফܳ बਵ۽ ࢤп೮
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 द Ӓܿਵ۽ جই৬ࢲ, ߣূ ফب э ࢤпೞݶࢲ ࠇद
(Әࠗఠ ഁтܾ ࣻ )
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
Precision Positive Predictive Value ࠙ܨ Ѿҗ(ݽ؛)ਸ बਵ۽
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
Negative Predictive Value ࠙ܨ Ѿҗ(ݽ؛)ਸ बਵ۽
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
Recall Sensitivity True Positive Rate ਸ बਵ۽
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
ਸ बਵ۽ False Positive Rate
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
ਸ बਵ۽ Specificity True Negative Rate
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
ਸ बਵ۽ Fall-out rate False Positive Rate
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 Ѧ ೞҊ ೮ભ. ߣূ ফب э ࢤпೞݶࢲ ࠇद (Әࠗఠ
ഁтܾ ࣻ )
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
? TP ब ٜ ܻೞݶ, ?
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
TN ब ٜ ? ܻೞݶ, ?
ഁтܻભ? ਗې Ӓ۠Ѣਃ
ӝୡח ೮ਵפө ઑӘ݅ ؊ ೧ ࠇद.
Confusion Matrix with Histogram
https://www.medcalc.org/manual/roc-curves.php Criterion, Threshold য়ܲଃ Distribution Actual True, ৽ଃ Actual False.
Threshold ਤ۽ח ݽف True۽ ஏೞח ݽ؛ Ҋ о೮ਸ ٸ,
https://www.medcalc.org/manual/roc-curves.php Thresholdܳ ӓױਵ۽ ஏ ز दெࠇद. যڃ ੌ ੌযաաਃ? Precision:
Recall: Specificity: Fall-out:
https://www.medcalc.org/manual/roc-curves.php Thresholdܳ ӓױਵ۽ ஏ ز दெࠇद. যڃ ੌ ੌযաաਃ? True
positive rate: True negative rate:
https://www.medcalc.org/manual/roc-curves.php ߣূ ߈۽ ز दெࠇद. যڃ ੌ ੌযաաਃ? True positive
rate: True negative rate:
Specificity৬ Sensitivity ҙ҅ https://www.medcalc.org/manual/roc-curves.php
ROC(Receiver Operating Characteristic) curve
рױೞѱח, Sensitivity৬ 1-Specificityܳ п ୷ਵ۽ ೞח 2ରਗ Ӓې https://www.medcalc.org/manual/roc-curves.php AUC
(Area Under Curve)
рױೞѱח, Sensitivity৬ 1-Specificityܳ п ୷ਵ۽ ೞח 2ରਗ Ӓې https://www.medcalc.org/manual/roc-curves.php Actual
True৬ Actual False distribution ৮߷ೞѱ эਸ ٸ (feature class ߸߹מ۱ হ) ROC curveח 45ب пب ࢶ
рױೞѱח, Sensitivity৬ 1-Specificityܳ п ୷ਵ۽ ೞח 2ରਗ Ӓې https://www.medcalc.org/manual/roc-curves.php Actual
True৬ Actual False distribution Ҁח হ ৮߷ೞѱ ܻ࠙ ؼ ٸ ROC ழ࠳ (feature class ߸߹ מ۱ ৮߷) ROC ழ࠳о ઝ࢚ױী оөࣻ۾ feature class ߸߹ מ۱ જҊ ೡ ࣻ .
ROC(Receiver Operating Characteristic) curve with Machine Learning
Classifierܳ ݅ٚח Ѥ, ف ѐ histogramਸ ӒܻҊ Thresholdܳ ೞח Ѫ
https://www.medcalc.org/manual/roc-curves.php
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py Histogramਸ Ӓ۷ח Ѥ ROC ழ࠳ܳ Ӓܾ ࣻ ח Ѫ!
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py ROC ழ࠳ܳ Ӓܾ ࣻ ח Ѥ ৈ۞ ROC ழ࠳
р ࠺Үܳ ా೧ જ ࢿמ ݽ؛ਸ ইյ ࣻ ח Ѫ!
AUCо = ݽ؛ ҅ೠ probabilityܳ ߄ఔਵ۽ Ӓܽ histogramٜ ੜ
ܻ࠙غয . = ݽ؛ Threshold(Decision BoundaryۄҊب ೠ)ী ؏ хೞ. = উੋ ஏਸ ೠ.
ݽ؛ ࢶఖী ROC ழ࠳ܳ ഝਊೠ = Decision Boundaryী ࢚ҙহ ؊
જ ݽ؛ਸ ח. = ganziо դ.
Ӓ۰ࠇद. ؘఠ: titanic ݽ؛ - sklearn.linear_model.LinearRegression - sklearn.linear_model.LogisticRegression -
sklearn.tree.DecisionTreeClassifier - sklearn.ensemble.RandomForestClassifier ١ whatever you want - Tree ҅ৌ ݽ؛ ҃ model predict_proba() ݫࣗ٘ܳ ࢎਊೞݶ ഛܫ ҅ ؾ פ. - ীח Thresholdܳ a ݅ఀ ز೧оݴ Sensitivity, Specificityܳ ҅೧ ઝܳ ҳೞ ࣁਃ. - যڌѱ ೞݶ Thresholdܳ ੜ زदఃݶࢲ ROC ઝܳ ନਸ ࣻ ਸөਃ? - ઝٜਸ ಣݶ࢚ী ନযࠁࣁਃ.
sklearn.metrics.roc_curve ܳ ഝਊ ೧ ࠇद. ؘఠ: titanic ݽ؛ - sklearn.linear_model.LinearRegression
- sklearn.linear_model.LogisticRegression - sklearn.tree.DecisionTreeClassifier - sklearn.ensemble.RandomForestClassifier ١ whatever you want ؊ աইоࢲ, - sklearnਸ ਊ೧ AUCب ҅ ೧ࠇद. - ৈ۞ ݽ؛ٜ ࢿמਸ ࠺Ү ೧ ࠇद. - DecisionTreeClassifierܳ ࢎਊ೮؊ۄب, ࢎਊೠ featureо ܰݶ ӒѤ ܲ ݽ؛ੑפ . - ఋఋץ ݈Ҋ, ܲ classification ޙઁীب ഝਊ೧ ࠁࣁਃ.