Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tree Methods
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Sunmi Yoon
November 04, 2019
Technology
0
130
Tree Methods
Decision Tree, Random Forest를 dataitgirls3 학생들에게 가르치기 위해 만든 수업자료입니다.
Sunmi Yoon
November 04, 2019
Tweet
Share
More Decks by Sunmi Yoon
See All by Sunmi Yoon
데이터 분석가 채용 공고 읽는 방법
ysunmi0427
1
370
Deep down in classification 0.5 magic number
ysunmi0427
0
110
Confusion matrix
ysunmi0427
0
160
심슨의 역설
ysunmi0427
0
2.4k
회사는 어떤 사람을 데이터 분석가로 채용하고 싶어하는 것일까?
ysunmi0427
0
2.5k
Other Decks in Technology
See All in Technology
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
360
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
月間数億レコードのアクセスログ基盤を無停止・低コストでAWS移行せよ!アプリケーションエンジニアのSREチャレンジ💪
miyamu
0
720
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1k
KubeCon + CloudNativeCon NA ‘25 Recap, Extensibility: Gateway API / NRI
ladicle
0
170
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
150
GCASアップデート(202510-202601)
techniczna
0
240
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
しろおびセキュリティへ ようこそ
log0417
0
270
DatabricksホストモデルでAIコーディング環境を構築する
databricksjapan
0
230
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
110
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
1
140
Featured
See All Featured
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
71
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
640
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
A Tale of Four Properties
chriscoyier
162
24k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
410
Done Done
chrislema
186
16k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
190
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
230
Paper Plane
katiecoart
PRO
0
46k
Marketing to machines
jonoalderson
1
4.6k
Transcript
Tree methods dataitgirls3 Instructor Sunmi Yoon
Decision Tree
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead Root Node (ࡸܻ) Intermediate Node (о) Terminal Node, Leaf ()
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead അ ਤী ؘఠо ݻ ѐ ਤ೧ ח Ӓ ؘఠٜ যڃ ۄ߰ਸ оҊ ח
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead যڃ ӝળਵ۽ оӝܳ ೮ח (gini ژח entropy)
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead Terminal Nodeী بೠ ؘఠٜਸ যڌѱ ࠙ܨೡ Ѫੋ
sklearn Code
Impurity
Impurity ࢎѾաޖח Impurity (ࠛࣽب, ࠛഛपࢿ) ծইח ߑߨਵ۽ णפ. ࣽبо ૐоೞח
Ѫਸ فҊ Information gainۄҊ ೞӝب פ. য়ט ࢎѾաޖ ࠛࣽب ஏ ߑߨ , Gini Indexܳ ҕࠗפ.
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead G = d ∑ i=1 Ri ( 1 − m ∑ k=1 p2 ik) Step 1. gini = 0.473 ਸ ҅೧ যࠁࣁਃ Step 2. gini = 0.226 ਸ ҅೧ যࠁࣁਃ
https://imgur.com/n3MVwHW
Random Forest
ৈ۞ ܻٜਸ ‘ܰѱ’ ݅ٚ. https://www.researchgate.net/figure/Architecture-of-the-random-forest-model_fig1_301638643
https://community.alteryx.com/t5/Alteryx-Designer-Knowledge-Base/Seeing-the-Forest-for-the-Trees-An-Introduction-to-Random-Forest/ta-p/158062 bagging = bootstrap aggregating
Bagging ߓӦ(bagging) bootstrap aggregating ড۽, ࠗझە(bootstrap)ਸ ా೧ ઑӘঀ ܲ ള۲
ؘఠী ೧ ള۲ػ ӝୡ ࠙ܨӝ(base learner)ٜਸ Ѿ(aggregating)दఃח ߑߨ. ࠗझەۆ, য ള۲ ؘఠীࢲ ࠂਸ ೲਊೞৈ ਗ ؘఠࣇҗ э ӝ ؘఠࣇਸ ݅٘ח җਸ ݈ೠ. ߓӦਸ ా೧ ےؒ ನۨझܳ ള۲दఃח җ җ э ࣁ ױ҅۽ ೯ػ. 1. ࠗझە ߑߨਸ ా೧ Nѐ ള۲ ؘఠࣇਸ ࢤࢿೠ. 2. Nѐ ӝୡ ࠙ܨӝ(ܻ)ٜਸ ള۲दఅ. 3. ӝୡ ࠙ܨӝ(ܻ)ٜਸ ೞա ࠙ܨӝ(ےؒ ನۨझ)۽ Ѿೠ(ಣӐ ژח җ߈ࣻై ߑध ਊ). Wikipedia ےؒನۨझ > ߓӦਸ ਊೠ ನۨझ ҳࢿ
sklearn Code