Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLOps勉強会 そのEdgeAIはUXを 改善できるか
Search
oshima
October 14, 2021
Technology
1
1.3k
MLOps勉強会 そのEdgeAIはUXを 改善できるか
第12回 MLOps 勉強会の資料です
oshima
October 14, 2021
Tweet
Share
More Decks by oshima
See All by oshima
CCSE2023 大規模言語モデルのZero-shot Learningを用いたデータ構築と開発への応用
yujioshima
2
450
メルカリのLLMを使ったサービス開発の進め方
yujioshima
0
290
生成系AI/LLM に関する 注目アップデート ~MS Build 2023 編~
yujioshima
5
2.7k
Mercar Gears MercariにおけるEdgeAIについて
yujioshima
0
250
CCSE2020 メルカリにおけるEdgeAIを用いた 新たなUXの開発
yujioshima
0
340
MLSE モバイル向け機械学習モデル管理基盤
yujioshima
2
3.3k
Other Decks in Technology
See All in Technology
How to achieve interoperable digital identity across Asian countries
fujie
0
140
JAZUG 15周年記念 × JAT「AI Agent開発者必見:"今"のOracle技術で拡張するAzure × OCIの共存アーキテクチャ」
shisyu_gaku
1
140
綺麗なデータマートをつくろう_データ整備を前向きに考える会 / Let's create clean data mart
brainpadpr
3
370
AI ReadyなData PlatformとしてのAutonomous Databaseアップデート
oracle4engineer
PRO
0
230
ユーザーの声とAI検証で進める、プロダクトディスカバリー
sansantech
PRO
1
110
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
AI時代こそ求められる設計力- AWSクラウドデザインパターン3選で信頼性と拡張性を高める-
kenichirokimura
3
240
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9.1k
Optuna DashboardにおけるPLaMo2連携機能の紹介 / PFN LLM セミナー
pfn
PRO
2
940
『バイトル』CTOが語る! AIネイティブ世代と切り拓くモノづくり組織
dip_tech
PRO
1
110
Shirankedo NOCで見えてきたeduroam/OpenRoaming運用ノウハウと課題 - BAKUCHIKU BANBAN #2
marokiki
0
170
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
4
450
Featured
See All Featured
Writing Fast Ruby
sferik
629
62k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Mobile First: as difficult as doing things right
swwweet
224
10k
Statistics for Hackers
jakevdp
799
220k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.3k
A designer walks into a library…
pauljervisheath
209
24k
The Cult of Friendly URLs
andyhume
79
6.6k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
そのEdgeAIはUXを 改善できるか 株式会社メルカリ 大嶋
whoami 大嶋 悠司 Tech Lead of EdgeAI team in Mercari
• Github: YujiOshima • Twitter: @overs_5121
そのEdgeAIはUXを改善できるか
なぜクライアントサイドにAIを導入するのか {プライバシー / ネットワーク / サーバ料金} を気にせずMLをつけっぱなしにできる 例:スマートスピーカーのwakeワード 「OK Google」「Hey Siri」
TV会議の背景ぼかし
つけっぱなしだと Button Upload より曖昧・楽なユーザアクションを拾うことができる より自然なインタラクション より良いタイミングの情報提示
その機能はどのようにUXを改善するか
かざして売れるかチェック カメラをかざすだけで カテゴリや売られている値段がわかる ネイティブアプリ版,webアプリ版を開発 ネイティブ Web 「撮影」というアクションの排除
効果はありそうか 結果表示 物体検出 写真撮影 カメラ画面 ここでの離脱が 30% 程度で最も多い! EdgeAIしない場合のフロー 次のアイテムの情報を見るにはまた最初から
離脱率や検索されたアイテム数を指標に改善を測れそう!!
かざして売れるかチェックの実装
体験を悪化させないか
EdgeAI導入による体験の悪化 • アプリサイズの増加 • 発熱・電池消費
アプリサイズ アプリサイズの増加はアプリのDL数を低下させる* * https://segment.com/blog/mobile-app-size-effect-on-downloads/ ** https://android-developers.googleblog.com/2021/07/announcing-androids-updateable-fully.html MLモデル TF Liteなどの ライブラリ
対策 • 軽量なモデルの選定,軽量化 • モデルの量子化 • ライブラリビルドのチューニング • TensorFlow Lite for Android**
発熱・電池消費 ML推論によって発熱・電池消費の増加が起こる モデル推論 前処理 後処理 対策 • GPU, ANE*など適切なデバイスの選択 •
負荷の高い処理と低い処理を組み合わせる • 体験を維持しながら処理頻度を落とす** * https://developer.apple.com/jp/machine-learning/core-ml/ ** MediaPipeを使ったARアプリ開発事例
期待する性能を実現できるか
EdgeAIの体験を支えるもの • モデルの精度 • ユーザのデバイス上でのモデルの推論速度 • ユーザのデバイス上でのモデル推論を含む機能全体のパフォーマンス ユーザサイドでパフォーマンスが担保できることが重要
かざして売れるかチェックの場合 • MLモデル単体での推論速度 • MLモデル単体での精度 • Trackingのパフォーマンス • Trackingの精度 を実機で確認したい!
お客さまが使う端末の種類はいっぱいある・・
JetFire 我々のチームで開発・運用するEdgeAI用プラットフォーム
JetFire
モデル単体の検証
モデルを組み込んだロジックの検証
モデルの改善はUXの改善 評価はJetFireで自動化 JetFireで評価された実装であればアプリに組み込める モデル学習 モデル評価 機能実装 機能評価
UIは期待する体験を実現できるか
メルカリステーションにおける先行リリース お客さまアンケートの実施
お客さまの声をもとにUIを改善 改善点 • 提示した情報をすぐ消さない • 加速度情報から検出タイミングの調整 • 検出できないときにガイドを表示 アンケートスコアが改善! Usability
: 4.23 → 4.45 Responsiveness : 4.33 → 4.58
UXは改善できたか
ユーザログ分析 KPIは • 離脱率の低減 • 売れるかチェックで検索されたアイテムの数 Guardrail metricsとして • 全体の出品数
参考:メルカリにおけるA/Bテスト標準化への取り組み
結果 離脱率,検索されたアイテム数 ともに改善! 特にアイテムの数は 8倍近くに! 🎉🎉🎉🎉 「かざす」UIは有効だったと言えそう!
次回作にご期待ください ユーザのログを詳細に追うと • 出品までつながったお客さまがまだ少ない • 再度機能を使ってくれたお客さまが少ない 仮説を立てて改善を繰り返す・・・ 俺たちの戦いはこれからだ!!