Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CCSE2020 メルカリにおけるEdgeAIを用いた 新たなUXの開発
Search
oshima
December 11, 2020
Technology
0
340
CCSE2020 メルカリにおけるEdgeAIを用いた 新たなUXの開発
oshima
December 11, 2020
Tweet
Share
More Decks by oshima
See All by oshima
CCSE2023 大規模言語モデルのZero-shot Learningを用いたデータ構築と開発への応用
yujioshima
2
450
メルカリのLLMを使ったサービス開発の進め方
yujioshima
0
290
生成系AI/LLM に関する 注目アップデート ~MS Build 2023 編~
yujioshima
5
2.7k
MLOps勉強会 そのEdgeAIはUXを 改善できるか
yujioshima
1
1.3k
Mercar Gears MercariにおけるEdgeAIについて
yujioshima
0
250
MLSE モバイル向け機械学習モデル管理基盤
yujioshima
2
3.3k
Other Decks in Technology
See All in Technology
戦えるAIエージェントの作り方
iwiwi
15
6.9k
Open Table Format (OTF) が必要になった背景とその機能 (2025.10.28)
simosako
3
550
進化する大規模言語モデル評価: Swallowプロジェクトにおける実践と知見
chokkan
PRO
2
370
マルチエージェントのチームビルディング_2025-10-25
shinoyamada
0
230
AIを使ってテストを楽にする
kworkdev
PRO
0
350
Okta Identity Governanceで実現する最小権限の原則
demaecan
0
210
AI連携の新常識! 話題のMCPをはじめて学ぶ!
makoakiba
0
170
AWSが好きすぎて、41歳でエンジニアになり、AAIを経由してAWSパートナー企業に入った話
yama3133
2
210
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
190
実践マルチモーダル検索!
shibuiwilliam
2
470
GCASアップデート(202508-202510)
techniczna
0
140
オブザーバビリティが育むシステム理解と好奇心
maruloop
3
1.7k
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
650
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
190
Automating Front-end Workflow
addyosmani
1371
200k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Site-Speed That Sticks
csswizardry
13
930
A better future with KSS
kneath
239
18k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Docker and Python
trallard
46
3.6k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
630
Transcript
メルカリにおけるEdgeAIを用いた 新たなUXの開発 CCSE2020 大嶋悠司
自己紹介 大嶋 悠司 2019/12 ~ Tech Lead of EdgeAI team
in Mercari • EgeAI機能開発/研究・モデル作成・プラットフォーム構築 • OSS活動: ◦ Kubeflow katib (owner) ◦ Docker infrakit (maintainer) • Github: YujiOshima • Twitter: @overs_5121
発表の流れ • EdgeAIとは・EdgeAIチームの取り組み • 機能開発(要件定義) • 機能開発(POC開発) • 機能開発(技術課題洗い出し)
EdgeAIとは MLモデルの推論を端末上で行う 1 sec 〜 〜 50ms インタラクティブなUXを実現
EdgeAIチームの取り組み 画像分類: アイテムを撮影すると即座にカテゴリを推定 MLの推論を端末上で行うことでインタラクティブなUXを実現 リリース済み
EdgeAIチームの取り組み 自然言語(IME): 入力に基づき動的に表示を調整 トライアル中 MLの推論を端末上で行うことでインタラクティブなUXを実現
EdgeAIチームの取り組み 物体検出・追跡: カメラに映る物体をリアルタイムに追跡 この機能の開発を例に 開発中 MLの推論を端末上で行うことでインタラクティブなUXを実現
開発の流れ 要件定義 社内ユーザテスト POC作成 技術課題洗い出し
要件定義
10 売れるかチェック アイテムを撮影すると • 売れている価格平均 • 売り切れ率 がわかる UXを改善し利用率を上げたい
11 利用率を向上のために 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面 売れるかチェックのステップを分解
12 ボトルネックの調査 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面 ここでやめてしまうお客様が多い 写真の撮影は想定以上にハードルが高いのでは?
写真撮影のステップをなくせないか
13 ボトルネックの調査 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面
14 ボトルネックの調査 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面
15 領域検出を端末上で行う 結果表示 タップ 類似商品検索 領域検出 カメラ画面
16 POC作成+ユーザテスト
17 領域検出を端末上で行う
18 • 物体検出の精度は十分 • タップすればいいことが伝わりにくい 社内ユーザテスト 物体検出とともに売れやすい価格などの 情報提示もリアルタイムに行いたい
19 領域検出を端末上で行う 結果表示 タップ 類似商品検索 領域検出 カメラ画面
20 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面
21 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面 画像転送に時間が かかる
22 特徴量抽出 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面 011010 010101 011...
23 特徴量抽出 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面 011010 010101 011...
転送量を大幅に軽減
24
25 技術課題洗い出し
26 リリースのために解決すべき課題 • モデルサイズと精度のトレードオフ • 端末の熱・電池消費の問題
27 モデルサイズと精度のバランス アーキテクチャ Precision/mAP Recall/AR@100 モデルサイズ SSD-mobilenetv2 0.56 0.66 18MB
SSDLite-mobilenetv2 0.56 0.67 12MB SSDLite-mobilenetv3-small 0.38 0.5 3.7MB SSDLite-mobiledet 0.59 0.71 13.8MB モデルの精度だけを追求することはできない 実行デバイスで推論速度も違う
28 Edgeモデル検証用プラットフォーム モデル学習 参考:MLSE モバイル向け機械学習モデル管理基盤
29 Edgeモデル検証用プラットフォーム モデル学習 参考:MLSE モバイル向け機械学習モデル管理基盤 精度・モデルサイズや 実デバイス上の推論速度を可視化
30 デバイスごとのベンチマーク iPhone 11 iPhone 8 CoreML GPU CPU XNNPack
31 端末の熱・電池消費の問題 30 FPS ・・・
32 端末の熱・電池消費の問題 参考: Mediapipeを活用したストリーミング推論の事例紹介-カメラをかざして家の中から売れるアイテムを探そう 端末上での処理をパイプラインで表現 • 並列化 • 重い処理の計算頻度を下げる
33 端末の熱・電池消費の問題
34 まとめ • どこまでを端末上で行うか,どれくらいの精度が必要か ◦ ユーザテストとPOCを繰り返す • 端末上での処理能力や熱の問題 ◦ MLの精度の追求は難しい
◦ サイズ検証や実機ベンチマークを自動化 ◦ UXを損なわないレベルで計算コストを下げるチューニング 課題 • リリース後のログの設計 • モデルの更新基盤