Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
メルカリのLLMを使ったサービス開発の進め方
Search
oshima
June 22, 2023
Technology
0
260
メルカリのLLMを使ったサービス開発の進め方
LLM活用の現状と課題 -言語モデルをプロダクトに取り入れる【メルカリ×PKSHA×カラクリ】
https://findy.connpass.com/event/285976/
での発表資料
oshima
June 22, 2023
Tweet
Share
More Decks by oshima
See All by oshima
CCSE2023 大規模言語モデルのZero-shot Learningを用いたデータ構築と開発への応用
yujioshima
2
440
生成系AI/LLM に関する 注目アップデート ~MS Build 2023 編~
yujioshima
5
2.6k
MLOps勉強会 そのEdgeAIはUXを 改善できるか
yujioshima
1
1.2k
Mercar Gears MercariにおけるEdgeAIについて
yujioshima
0
210
CCSE2020 メルカリにおけるEdgeAIを用いた 新たなUXの開発
yujioshima
0
310
MLSE モバイル向け機械学習モデル管理基盤
yujioshima
2
3.2k
Other Decks in Technology
See All in Technology
The Future of SEO: The Impact of AI on Search
badams
0
190
リアルタイム分析データベースで実現する SQLベースのオブザーバビリティ
mikimatsumoto
0
1.3k
Swiftの “private” を テストする / Testing Swift "private"
yutailang0119
0
130
なぜ私は自分が使わないサービスを作るのか? / Why would I create a service that I would not use?
aiandrox
0
730
AndroidデバイスにFTPサーバを建立する
e10dokup
0
250
アジャイル開発とスクラム
araihara
0
170
PL900試験から学ぶ Power Platform 基礎知識講座
kumikeyy
0
130
明日からできる!技術的負債の返済を加速するための実践ガイド~『ホットペッパービューティー』の事例をもとに~
recruitengineers
PRO
3
390
SA Night #2 FinatextのSA思想/SA Night #2 Finatext session
satoshiimai
1
140
プロセス改善による品質向上事例
tomasagi
2
2.5k
Cloud Spanner 導入で実現した快適な開発と運用について
colopl
1
630
2025-02-21 ゆるSRE勉強会 Enhancing SRE Using AI
yoshiiryo1
1
330
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
Side Projects
sachag
452
42k
A Modern Web Designer's Workflow
chriscoyier
693
190k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
Automating Front-end Workflow
addyosmani
1368
200k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
174
51k
Done Done
chrislema
182
16k
Code Review Best Practice
trishagee
67
18k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Rails Girls Zürich Keynote
gr2m
94
13k
Transcript
メルカリのLLMを使ったサービ ス開発の進め方 株式会社メルカリ 大嶋
自己紹介 大嶋@メルカリ 2014~2019 NTT研究所 • OSS活動 • ML Ops 2019
~ 株式会社メルカリ • ~2022 EdgeAI チーム テックリード • 生成AI/LLMチーム テックリード 2
開発中の機能:SEO改善 ページのコンテンツを反映したい • 日傘と傘で重複 • ブランド名の書き方 など カテゴリ X ブランド名の組み合わせ
LLMでいい感じのタイトルを生成 3
開発中の機能:商品情報サジェスト 商品に不足している情報がありそうなら提案 例:定価 ルールベースの実装をLLMで推定に 4
LLMは必要か? それって小さめな • 分類モデル • 要約モデル で十分なのでは? 5
LLMは必要か? それって小さめな • 分類モデル • 要約モデル で十分なのでは? Yes だがLLMでやる意義があると思っている 6
なぜLLMを使うのか/使ったのか LLM = Chatbot ではない LLM導入の価値 • PoCコストの劇的な低減 • LLMがないと実現できない体験
えっ!? 7
PoCコストの劇的な低減 LLMは広範なタスクを高い精度でこなせる データ作成 モデル学習 リリース 効果検証 ルールベース・人手で代替 リリース 効果検証 やりたいこと
Feasibility check 検証がでるまでに時間・コストがかかる 精度不足や代替可能性の問題 8
PoCコストの劇的な低減 LLMは広範なタスクを高い精度でこなせる データ作成 モデル学習 リリース 効果検証 LLM + Few shot
で代替 リリース 効果検証 やりたいこと Feasibility check 検証がでるまでに時間・コストがかかる それなりの精度でかなり多くのタスクの PoCが可能 9
LLMでないと実現できない体験 複雑なパイプラインの構築 • LLMによる情報抽出 • Evidenceの検索 • LLMによる生成 いずれも簡単ではない 小規模な機能でコンポーネントの知見を貯める
Build and maintain your company Copilot with Azure ML and GPT-4 10
LLMがないとできない体験のための準備 • どのレイヤ/コンポーネントか意識 • API・モデルの特性の理解 • FineTuningの必要性 The era of
the AI Copilot 11
まとめ • LLM ≠ Chatbot • リリースしないと分からない • リリースしたけど分からなかった 12