Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
メルカリのLLMを使ったサービス開発の進め方
Search
oshima
June 22, 2023
Technology
0
300
メルカリのLLMを使ったサービス開発の進め方
LLM活用の現状と課題 -言語モデルをプロダクトに取り入れる【メルカリ×PKSHA×カラクリ】
https://findy.connpass.com/event/285976/
での発表資料
oshima
June 22, 2023
Tweet
Share
More Decks by oshima
See All by oshima
CCSE2023 大規模言語モデルのZero-shot Learningを用いたデータ構築と開発への応用
yujioshima
2
460
生成系AI/LLM に関する 注目アップデート ~MS Build 2023 編~
yujioshima
5
2.7k
MLOps勉強会 そのEdgeAIはUXを 改善できるか
yujioshima
1
1.3k
Mercar Gears MercariにおけるEdgeAIについて
yujioshima
0
260
CCSE2020 メルカリにおけるEdgeAIを用いた 新たなUXの開発
yujioshima
0
350
MLSE モバイル向け機械学習モデル管理基盤
yujioshima
2
3.3k
Other Decks in Technology
See All in Technology
Introduction to Bill One Development Engineer
sansan33
PRO
0
340
ファインディにおけるフロントエンド技術選定の歴史
puku0x
1
760
Claude Codeを使った情報整理術
knishioka
20
12k
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
210
「アウトプット脳からユーザー価値脳へ」がそんなに簡単にできたら苦労しない #RSGT2026
aki_iinuma
9
4.5k
AI: The stuff that nobody shows you
jnunemaker
PRO
1
160
AWS re:Invent 2025 を振り返る
kazzpapa3
2
110
Node vs Deno vs Bun 〜推しランタイムを見つけよう〜
kamekyame
1
380
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.6k
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
760
202512_AIoT.pdf
iotcomjpadmin
0
190
AWSと生成AIで学ぶ!実行計画の読み解き方とSQLチューニングの実践
yakumo
2
320
Featured
See All Featured
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
76
A Soul's Torment
seathinner
2
2.1k
The browser strikes back
jonoalderson
0
300
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
82
Agile that works and the tools we love
rasmusluckow
331
21k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
100
Become a Pro
speakerdeck
PRO
31
5.8k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
140
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
410
Transcript
メルカリのLLMを使ったサービ ス開発の進め方 株式会社メルカリ 大嶋
自己紹介 大嶋@メルカリ 2014~2019 NTT研究所 • OSS活動 • ML Ops 2019
~ 株式会社メルカリ • ~2022 EdgeAI チーム テックリード • 生成AI/LLMチーム テックリード 2
開発中の機能:SEO改善 ページのコンテンツを反映したい • 日傘と傘で重複 • ブランド名の書き方 など カテゴリ X ブランド名の組み合わせ
LLMでいい感じのタイトルを生成 3
開発中の機能:商品情報サジェスト 商品に不足している情報がありそうなら提案 例:定価 ルールベースの実装をLLMで推定に 4
LLMは必要か? それって小さめな • 分類モデル • 要約モデル で十分なのでは? 5
LLMは必要か? それって小さめな • 分類モデル • 要約モデル で十分なのでは? Yes だがLLMでやる意義があると思っている 6
なぜLLMを使うのか/使ったのか LLM = Chatbot ではない LLM導入の価値 • PoCコストの劇的な低減 • LLMがないと実現できない体験
えっ!? 7
PoCコストの劇的な低減 LLMは広範なタスクを高い精度でこなせる データ作成 モデル学習 リリース 効果検証 ルールベース・人手で代替 リリース 効果検証 やりたいこと
Feasibility check 検証がでるまでに時間・コストがかかる 精度不足や代替可能性の問題 8
PoCコストの劇的な低減 LLMは広範なタスクを高い精度でこなせる データ作成 モデル学習 リリース 効果検証 LLM + Few shot
で代替 リリース 効果検証 やりたいこと Feasibility check 検証がでるまでに時間・コストがかかる それなりの精度でかなり多くのタスクの PoCが可能 9
LLMでないと実現できない体験 複雑なパイプラインの構築 • LLMによる情報抽出 • Evidenceの検索 • LLMによる生成 いずれも簡単ではない 小規模な機能でコンポーネントの知見を貯める
Build and maintain your company Copilot with Azure ML and GPT-4 10
LLMがないとできない体験のための準備 • どのレイヤ/コンポーネントか意識 • API・モデルの特性の理解 • FineTuningの必要性 The era of
the AI Copilot 11
まとめ • LLM ≠ Chatbot • リリースしないと分からない • リリースしたけど分からなかった 12