Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
メルカリのLLMを使ったサービス開発の進め方
Search
oshima
June 22, 2023
Technology
0
300
メルカリのLLMを使ったサービス開発の進め方
LLM活用の現状と課題 -言語モデルをプロダクトに取り入れる【メルカリ×PKSHA×カラクリ】
https://findy.connpass.com/event/285976/
での発表資料
oshima
June 22, 2023
Tweet
Share
More Decks by oshima
See All by oshima
CCSE2023 大規模言語モデルのZero-shot Learningを用いたデータ構築と開発への応用
yujioshima
2
460
生成系AI/LLM に関する 注目アップデート ~MS Build 2023 編~
yujioshima
5
2.7k
MLOps勉強会 そのEdgeAIはUXを 改善できるか
yujioshima
1
1.3k
Mercar Gears MercariにおけるEdgeAIについて
yujioshima
0
260
CCSE2020 メルカリにおけるEdgeAIを用いた 新たなUXの開発
yujioshima
0
350
MLSE モバイル向け機械学習モデル管理基盤
yujioshima
2
3.3k
Other Decks in Technology
See All in Technology
AWS re:Inventre:cap ~AmazonNova 2 Omniのワークショップを体験してきた~
nrinetcom
PRO
0
130
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
1
120
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
AI に「学ばせ、調べさせ、作らせる」。Auth0 開発を加速させる7つの実践的アプローチ
scova0731
0
140
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
860
Keynoteから見るAWSの頭の中
nrinetcom
PRO
1
170
「リリースファースト」の実感を届けるには 〜停滞するチームに変化を起こすアプローチ〜 #RSGT2026
kintotechdev
0
740
20251225_たのしい出張報告&IgniteRecap!
ponponmikankan
0
110
スクラムマスターが スクラムチームに入って取り組む5つのこと - スクラムガイドには書いてないけど入った当初から取り組んでおきたい大切なこと -
scrummasudar
1
1.8k
AWSと生成AIで学ぶ!実行計画の読み解き方とSQLチューニングの実践
yakumo
2
320
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
15
4.9k
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
150
Featured
See All Featured
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
160
First, design no harm
axbom
PRO
1
1.1k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
130
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
260
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
76
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
410
Bash Introduction
62gerente
615
210k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
The SEO identity crisis: Don't let AI make you average
varn
0
47
Scaling GitHub
holman
464
140k
A better future with KSS
kneath
240
18k
Transcript
メルカリのLLMを使ったサービ ス開発の進め方 株式会社メルカリ 大嶋
自己紹介 大嶋@メルカリ 2014~2019 NTT研究所 • OSS活動 • ML Ops 2019
~ 株式会社メルカリ • ~2022 EdgeAI チーム テックリード • 生成AI/LLMチーム テックリード 2
開発中の機能:SEO改善 ページのコンテンツを反映したい • 日傘と傘で重複 • ブランド名の書き方 など カテゴリ X ブランド名の組み合わせ
LLMでいい感じのタイトルを生成 3
開発中の機能:商品情報サジェスト 商品に不足している情報がありそうなら提案 例:定価 ルールベースの実装をLLMで推定に 4
LLMは必要か? それって小さめな • 分類モデル • 要約モデル で十分なのでは? 5
LLMは必要か? それって小さめな • 分類モデル • 要約モデル で十分なのでは? Yes だがLLMでやる意義があると思っている 6
なぜLLMを使うのか/使ったのか LLM = Chatbot ではない LLM導入の価値 • PoCコストの劇的な低減 • LLMがないと実現できない体験
えっ!? 7
PoCコストの劇的な低減 LLMは広範なタスクを高い精度でこなせる データ作成 モデル学習 リリース 効果検証 ルールベース・人手で代替 リリース 効果検証 やりたいこと
Feasibility check 検証がでるまでに時間・コストがかかる 精度不足や代替可能性の問題 8
PoCコストの劇的な低減 LLMは広範なタスクを高い精度でこなせる データ作成 モデル学習 リリース 効果検証 LLM + Few shot
で代替 リリース 効果検証 やりたいこと Feasibility check 検証がでるまでに時間・コストがかかる それなりの精度でかなり多くのタスクの PoCが可能 9
LLMでないと実現できない体験 複雑なパイプラインの構築 • LLMによる情報抽出 • Evidenceの検索 • LLMによる生成 いずれも簡単ではない 小規模な機能でコンポーネントの知見を貯める
Build and maintain your company Copilot with Azure ML and GPT-4 10
LLMがないとできない体験のための準備 • どのレイヤ/コンポーネントか意識 • API・モデルの特性の理解 • FineTuningの必要性 The era of
the AI Copilot 11
まとめ • LLM ≠ Chatbot • リリースしないと分からない • リリースしたけど分からなかった 12